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Abstract. We study the asymptotic behavior of a class of non-autonomous

non-local fractional stochastic parabolic equation driven by multiplicative white
noise on the entire space Rn. We first prove the pathwise well-posedness of the

equation and define a continuous non-autonomous cocycle in L2(Rn). We then

prove the existence and uniqueness of tempered pullback attractors for the co-
cycle under certain dissipative conditions. The periodicity of the tempered at-

tractors is also proved when the deterministic non-autonomous external terms

are periodic in time. The pullback asymptotic compactness of the cocycle in
L2(Rn) is established by the uniform estimates on the tails of solutions for

sufficiently large space and time variables.

1. Introduction. This paper is concerned with the asymptotic behavior of solu-
tions of the following non-autonomous, non-local, fractional stochastic equations on
Rn:

∂u

∂t
+ (−∆)su+ λu = f(t, x, u) + g(t, x) + αu ◦ dW

dt
, x ∈ Rn, t > τ, (1.1)

with initial condition
u(τ, x) = uτ (x), x ∈ Rn, (1.2)

where λ and α are positive constants, g ∈ L2
loc(R, L2(Rn)), W is a two-sided real-

valued Wiener process on a probability space, and f : R×Rn×R → R is a smooth
nonlinearity. Note that the stochastic equation (1.1) is understood in the sense of
Stratonovich’s integration.

The operator (−∆)s is referred to as the fractional Laplacian with s ∈ (0, 1).
The differential equations involving the fractional Laplacian have a wide range of
applications in physics, biology, chemistry and other fields of science, see [1, 25,
29, 30, 31, 33, 36]. The solutions of fractional deterministic equations have been
studied in many publications, see [1, 7, 18, 21, 25, 29, 30, 31, 33, 36, 38, 41, 42, 44,
46, 47], and the references therein. The goal of the present paper is to investigate
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the existence of solutions and the existence of random attractors of the fractional
stochastic parabolic equation (1.1)-(1.2).

It is worth mentioning that the random attractors of stochastic equations with
the standard Laplace operator (i.e., s = 1) have already been examined by many
authors. In this respect, the reader is referred to [4, 5, 6, 8, 9, 10, 11, 12, 14, 15,
16, 17, 20, 22, 23, 24, 26, 32, 34, 43, 45, 48, 50, 51] for the autonomous stochastic
equations, and to [2, 13, 19, 27, 28, 35, 52, 53] for the non-autonomous stochastic
ones. In the contrast, there are only a few papers in the literature dealing with
the existence of random attractors for fractional stochastic equations [38, 39, 40,
54]. More precisely, the authors of [38, 39, 40] discussed the existence of random
attractors for stochastic equations involving (−∆)s with s ∈ ( 1

2 , 1), and the author
of [54] proved the existence of such attractors for parabolic equations with s ∈ (0, 1)
defined in bounded domains. There is no result available in the literature for the
existence of random attractors for the fractional stochastic equation (1.1) with s ∈
(0, 1) in the unbounded domains, including the whole space Rn. The purpose of
the present paper is to close this gap and prove problem (1.1)-(1.2) has a unique
tempered pullback random attractor for all s ∈ (0, 1) in L2(Rn).

The main difficulty of this paper lies in the non-compactness of Sobolev em-
bedding Hs(Rn) ↪→ L2(Rn) with s > 0 due to the unboundedness of Rn, which
introduces a major obstacle for establishing the pullback asymptotic compactness
of the solution operator. We overcome this difficulty by using the method of uni-
form estimates on the tails of solutions [49]. More precisely, for every ε > 0, we
show that there exists a large open ball OK in Rn with center at origin and radius
K > 0 such that the solutions are uniformly less than 1

4ε in L2(Rn \OK) when time

is sufficiently large. Since OK is bounded and the embedding Hs(OK) ↪→ L2(OK)
is compact with s > 0, by the uniform estimates, we can prove that the solutions
are compact in L2(OK). Consequently, the solutions are covered by a finite number
of open balls in L2(OK) with radii less than 1

4ε. This along with the uniform tail-
estimates implies that the solutions are covered by a finite number of open balls in
L2(Rn) with radii less than ε, and hence the solutions are asymptotically compact
in L2(Rn), see Lemma 5.4 for more details. Compared with the equations with
standard Laplace operator, the uniform estimates on the tails of solutions are much
more involved because of the non-local nature of the fractional Laplace operator
(−∆)s, see Lemma 4.4 in Section 4.

The rest of the paper is organized as follows. In Section 2, we review some
basic results on the existence of random attractors for non-autonomous random
dynamical systems. In Section 3, we prove the pathwise well-posedness of problem
(1.1)-(1.2) in L2(Rn) and define a continuous non-autonomous cocycle over a metric
dynamical system. The uniform estimates of solutions are contained in Section 4,
and the proof of existence of tempered random attractors is given in Section 5.

2. Preliminaries. In this section, we briefly review some notations and results for
non-autonomous random dynamical systems for the sake of readers’ convenience.
We assume that (Ω,F ,P) is a probability space, and (X, d) is a separable metric
space. We use d(A,B) to denote the Hausdorff semi-distance for nonempty subsets
A and B of X.

Definition 2.1. Let (Ω,F ,P, (θt)t∈R) be a metric dynamical systems. A mapping
Φ : R+×R×Ω×X → X is called a continuous cocycle on X over (Ω,F ,P, (θt)t∈R)
if for all τ ∈ R, ω ∈ Ω and t, s ∈ R+, the following conditions are satisfied:
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(i) Φ(·, τ, ·, ·) : R+ × Ω × X → X is a (B(R+) × F × B(X),B(X))-measurable
mapping;

(ii) Φ(0, τ, ω, ·) is the identity on X;
(iii) Φ(t+ s, τ, ω, ·) = Φ(t, τ + s, θsω, ·) ◦ Φ(s, τ, ω, ·);
(iv) Φ(t, τ, ω, ·) : X → X is continuous.

In addition, if there exists a positive number T such that for every t ∈ R+, τ ∈ R
and ω ∈ Ω,

Φ(t, τ + T, ω, ·) = Φ(t, τ, ω, ·),
then Φ is called a continuous periodic cocycle on X with periodic T .

Definition 2.2. Let D be a collection of some families of nonempty subsets of X.
Then Φ is said to be D-pullback asymptotically compact in X if for all τ ∈ R, ω ∈ Ω
and any sequences tn → +∞, xn ∈ D(τ − tn, θ−tnω), the sequence

{Φ(tn, τ − tn, θ−tnω, xn)}∞n=1 has a convergent subsequence in X.

Definition 2.3. Let D be a collection of some families of nonempty subsets of X
and A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D. Then A is called a D-pullback attractor of
Φ if the following conditions are satisfied:

(i) A is measurable and A(τ, ω) is compact for all τ ∈ R and ω ∈ Ω;
(ii) A is invariant, that is, for every τ ∈ R and ω ∈ Ω,

Φ(t, τ, ω,A(τ, ω)) = A(τ + t, θtω), t ≥ 0;

(iii) A attracts every member of D, that is, given B ∈ D, τ ∈ R and ω ∈ Ω,

lim
t→∞

d(Φ(t, τ − t, θ−tω,B(τ − t, θ−tω)),A(τ, ω)) = 0.

In addition, if there exists T > 0 such that

A(τ + T, ω) = A(τ, ω), ∀ τ ∈ R, ω ∈ Ω,

then we say A is periodic with period T .

The following results can be found in [52, 53] (see also [16, 17, 45] for related
results).

Proposition 2.4. Let D be an inclusion-closed collection of some families of
nonempty subsets of X, and Φ be a continuous cocycle on X over (Ω,F ,P, (θt)t∈R).
If Φ is D-pullback asymptotically compact in X and has a closed measurable D-
pullback absorbing set K in D, then Φ has a D-pullback attractor A in D. The
D-pullback attractor A is unique and is given by, for each τ ∈ R and ω ∈ Ω,

A(τ, ω) =
⋂
r≥0

⋃
t≥r

Φ(t, τ − t, θ−tω,K(τ − t, θ−tω)).

For the periodicity of D-pullback attractors, we have the following proposition
from [52].

Proposition 2.5. Let D be an inclusion-closed collection of some families of
nonempty subsets of X. Suppose Φ is a continuous periodic cocycle with period
T > 0 on X over (Ω,F ,P, (θt)t∈R). If Φ is D-pullback asymptotically compact in X
and has a closed measurable T -periodic D-pullback absorbing set K in D, then Φ
has a unique T -periodic D-pullback attractor A in D.
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Next, we recall some notations related to the fractional derivatives and fractional
Sobolev spaces. Given 0 < s < 1, the fractional Laplace operator (−∆)s is defined
by

(−∆)su(x) = −1

2
C(n, s)

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy, x ∈ Rn,

provided the integral exists, where C(n, s) is a positive constant depending on n
and s as given by

C(n, s) =

(∫
Rn

1− cos(ξ1)

|ξ|n+2s
dξ

)−1
, ξ = (ξ1, ξ2, · · · , ξn) ∈ Rn. (2.1)

It follows from [18] that

(−∆)su = F−1(|ξ|2s(Fu)), ξ ∈ Rn,

where F is the Fourier transform. Let Hs(Rn) be the fractional Sobolev space
defined by

Hs(Rn) =

{
u ∈ L2(Rn) :

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy <∞

}
with norm

‖u‖Hs(Rn) =

(∫
Rn
|u(x)|2dx+

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy

) 1
2

.

Throughout this paper, we denote the norm and the inner product of L2(Rn) by
‖ · ‖ and (·, ·), respectively. For convenience, the Gagliardo semi-norm of Hs(Rn) is
denoted ‖ · ‖Ḣs(Rn), i.e.,

‖u‖2
Ḣs(Rn) =

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy, u ∈ Hs(Rn).

We also use the notation

(u, v)Ḣs(Rn) =

∫
Rn

∫
Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy, u, v ∈ Hs(Rn).

Then for all u ∈ Hs(Rn) we have ‖u‖2Hs(Rn) = ‖u‖2 +‖u‖2
Ḣs(Rn). Note that Hs(Rn)

is a Hilbert space with inner product given by

(u, v)Hs(Rn) = (u, v) + (u, v)Ḣs(Rn), u, v ∈ Hs(Rn).

By [18], we have

‖(−∆)
s
2u‖2 =

1

2
C(n, s)‖u‖2

Ḣs(Rn), for all u ∈ Hs(Rn),

and hence

‖u‖2Hs(Rn) = ‖u‖2 +
2

C(n, s)
‖(−∆)

s
2u‖2, for all u ∈ Hs(Rn).

This implies that
(
‖u‖2 + ‖(−∆)

1
2u‖2

) 1
2

is an equivalent norm of Hs(Rn).



RANDOM ATTRACTORS 687

3. Cocycles. In this section, we establish the existence of a continuous cocycle for
the following non-autonomous fractional stochastic equation with s ∈ (0, 1):

∂u

∂t
+ (−∆)su+ λu = f(t, x, u) + g(t, x) + αu ◦ dW

dt
, x ∈ Rn, t > τ, (3.1)

with initial condition
u(τ, x) = uτ (x), x ∈ Rn, (3.2)

where λ and α are positive constants, g ∈ L2
loc(R,Rn), W is a two-sided real-valued

Wiener process on a probability space. The nonlinearity f : R × Rn × R → R is a
continuous function which satisfies, for all t, u ∈ R and x ∈ Rn,

f(t, x, u)u ≤ −β|u|p + ψ1(t, x), (3.3)

|f(t, x, u)| ≤ ψ2(t, x)|u|p−1 + ψ3(t, x), (3.4)

∂f

∂u
(t, x, u) ≤ ψ4(t, x), (3.5)

where β > 0 and p ≥ 2 are constants,

ψ1 ∈ L1
loc(R, L1(Rn)), ψ2, ψ4 ∈ L∞loc(R, L∞(Rn)), ψ3 ∈ Lqloc(R, L

q(Rn))

with 1
p + 1

q = 1.

Let (Ω,F , P ) be the standard probability space where Ω = {ω ∈ C(R,R) :
ω(0) = 0}, F is the Borel σ-algebra induced by the compact-open topology of Ω,
and P is the Wiener measure on (Ω,F). Denote by θt : Ω→ Ω the transformation

θtω(·) = ω(·+ t)− ω(t), ω ∈ Ω.

Then (Ω,F , P, {θt}t∈R) is a metric dynamical system. Consider the one-dimensional
stochastic equation:

dy + ydt = dW.

It follows from [3] that this equation has a unique stationary solution y(t) = z(θtω)

where z : Ω→ R is a random variable given by z(ω) = −
∫ 0

−∞ eτω(τ)dτ for ω ∈ Ω.

Moreover, there exists a θt-invariant set of full measure Ω0 such that z(θtω) is
pathwise continuous for every ω ∈ Ω0 and

lim
t→±∞

|z(θtω)|
|t|

= 0 and lim
t→±∞

1

t

∫ t

0

z(θtω)dt = 0. (3.6)

For convenience, in the sequel, we will not distinguish Ω0 and Ω and use the same
notation Ω for both Ω0 and Ω.

For our purpose, we need to convert the stochastic equation (3.1) into a deter-
ministic one parametrized by ω ∈ Ω. To that end, we introduce a new variable
v = v(t, τ, ω, vτ ) by

v(t, τ, ω, vτ ) = e−αz(θtω)u(t, τ, ω, uτ ) with vτ = e−αz(θτω)uτ , (3.7)

where τ ∈ R is a deterministic initial time, t ≥ τ , ω ∈ Ω, uτ ∈ L2(Rn), and
u = u(t, τ, ω, uτ ) is a solution of (3.1)-(3.2). Then we find that for t > τ ,

dv

dt
+(−∆)sv+λv = αz(θtω)v+e−αz(θtω)f(t, x, eαz(θtω)v)+e−αz(θtω)g(t, x), x ∈ Rn,

(3.8)
with initial condition

v(τ, x) = vτ (x), x ∈ Rn. (3.9)

To define a continuous cocycle for the fractional stochastic equation (3.1), we
first need to prove the existence and uniqueness of solutions of problem (3.8)-(3.9).
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By a solution v of (3.8)-(3.9), we mean v satisfies the equation in the following
sense.

Definition 3.1. Given τ ∈ R, ω ∈ Ω and vτ ∈ L2(Rn), a continuous func-
tion v(·, τ, ω, vτ ): [τ,∞) → L2(Rn) is called a solution of problem (3.8)-(3.9) if
v(τ, τ, ω, vτ ) = vτ and

v ∈ L2
loc((τ,∞), Hs(Rn))

⋂
Lploc((τ,∞), Lp(Rn)),

dv

dt
∈ L2

loc((τ,∞), H−s(Rn)) + Lqloc((τ,∞), Lq(Rn)),

and v satisfies, for every ξ ∈ Hs(Rn)
⋂
Lp(Rn),

d

dt
(v, ξ) +

1

2
C(n, s)

∫
Rn

∫
Rn

(v(x)− v(y))(ξ(x)− ξ(y))

|x− y|n+2s
dxdy + λ(v, ξ)

= αz(θtω)(v, ξ)+e−αz(θtω)
∫
Rn
f(t, x, eαz(θtω)v)ξ(x)dx+e−αz(θtω)

∫
Rn
g(t, x)ξ(x)dx

(3.10)
in the sense of distribution on (τ,∞).

To prove the existence of solutions of (3.8)-(3.9) in the sense of Definition 3.1, we
will approximate the entire space Rn by a bounded domain Ok = {x ∈ Rn : |x| < k}
and then take the limit as k → ∞. Let ρ : [0,∞) → R be a smooth function such
that 0 ≤ ρ(s) ≤ 1 for all 0 ≤ s <∞ and

ρ(s) = 1 for 0 ≤ s ≤ 1

2
and ρ(s) = 0 for s ≥ 1. (3.11)

Consider the following non-autonomous fractional equation on Ok:

dvk
dt

+ (−∆)svk + λvk =αz(θtω)vk + e−αz(θtω)f(t, x, eαz(θtω)vk)

+ e−αz(θtω)g(t, x), x ∈ Ok, t > τ
(3.12)

with boundary condition

vk(t, x) = 0, x ∈ Rn \ Ok, t > τ, (3.13)

and initial condition

vk(τ, x) = ρ

(
|x|
k

)
vτ (x), x ∈ Ok, (3.14)

where vτ ∈ L2(Rn). Note that in the boundary condition (3.13), we require vk = 0
on the complement of Ok (i.e., on Rn \ Ok), not just on the boundary of Ok.
This boundary condition is consistent with the definition of the non-local fractional
operator (−∆)s. To present the existence of solutions of problem (3.12)-(3.14), for
every k ∈ N, we set Hk = {v ∈ L2(Rn) : v = 0 a.e. for |x| ≥ k} and Vk = {v ∈
Hs(Rn) : v = 0 a.e. for |x| ≥ k}. The dual space of Vk is denoted V ∗k .

Let a : Hs(Rn)×Hs(Rn)→ R be a bilinear form given by, for v1, v2 ∈ Hs(Rn),

a(v1, v2) = λ(v1, v2) +
1

2
C(n, s)

∫
Rn

∫
Rn

(v1(x)− v1(y))(v2(x)− v2(y))

|x− y|n+2s
dxdy.

(3.15)
By using the bilinear form a, we define A: Hs(Rn)→ H−s(Rn) by

(A(v1), v2)(H−s,Hs) = a(v1, v2) for all v1, v2 ∈ Hs(Rn), (3.16)
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where (·, ·)(H−s,Hs) is the duality pairing of H−s(Rn) and Hs(Rn). Since Hk and

Vk are subspaces of L2(Rn) and Hs(Rn), respectively, we find that a : Vk ×Vk → R
and A: Vk → V ∗k are well defined. Indeed, we have

(A(v1), v2)(V ∗k ,Vk) = a(v1, v2) for all v1, v2 ∈ Vk,

where (·, ·)(V ∗k ,Vk) is the duality pairing of V ∗k and Vk. Under conditions (3.3)-(3.5),

it follows from [54] that for every τ ∈ R, ω ∈ Ω and vτ ∈ L2(Rn), problem (3.12)-
(3.14) has a unique solution vk in the sense that vk(·, τ, ω, vτ ): [τ,∞) → Hk is

continuous, vk(τ, τ, ω, vτ )(x) = ρ( |x|k )vτ (x) and

vk ∈ L2
loc((τ,∞), Vk)

⋂
Lploc((τ,∞), Lp(Rn)),

dvk
dt
∈ L2

loc((τ,∞), V ∗k ) + Lqloc((τ,∞), Lq(Rn)),

and vk satisfies, for every ξ ∈ Vk
⋂
Lp(Rn),

d

dt
(vk, ξ) +

1

2
C(n, s)

∫
Rn

∫
Rn

(vk(x)− vk(y))(ξ(x)− ξ(y))

|x− y|n+2s
dxdy + λ(vk, ξ)

= αz(θtω)(vk, ξ) + e−αz(θtω)
∫
Ok
f(t, x, eαz(θtω)vk)ξ(x)dx

+ e−αz(θtω)
∫
Ok
g(t, x)ξ(x)dx

(3.17)

in the sense of distribution on (τ,∞). Next, we derive uniform estimates of the
solution vk with respect to k ∈ N and prove the existence of solutions of (3.8)-(3.9)
by taking the limit of vk when k →∞.

Theorem 3.2. Suppose (3.3)-(3.5) hold. Then for every τ ∈ R, ω ∈ Ω and
vτ ∈ L2(Rn), problem (3.8)-(3.9) has a unique solution v(t, τ, ω, vτ ) in the sense
of Definition 3.1. This solution is (F ,B(L2(Rn)))-measurable in ω and continuous
in initial data vτ in L2(Rn). Moreover, the solution v satisfies the energy equation:

d

dt
‖v(t, τ, ω, vτ )‖2 + C(n, s)‖v‖2

Ḣs
+ 2λ‖v‖2

= 2αz(θtω)‖v‖2 + 2e−αz(θtω)
∫
Rn
f(t, x, eαz(θtω)v)vdx+ 2e−αz(θtω)

∫
Rn
g(t, x)vdx

(3.18)
for almost all t ≥ τ .

Proof. The proof is similar to the case of bounded domains as in [54]. Of course,
for problem (3.8)-(3.9) defined on the unbounded domain Rn, we must show that
all estimates on the solutions of (3.12)-(3.14) are uniform with respect to all k ∈ N.

Step (i). Uniform estimates of solutions of (3.12)-(3.14). By (3.12) we obtain

1

2

d

dt

∫
Ok
|vk(x)|2dx+

∫
Ok
vk(x)(−∆)svk(x)dx+ λ

∫
Ok
|vk(x)|2dx

= αz(θtω)

∫
Ok
|vk(x)|2dx+ e−αz(θtω)

∫
Ok
f(t, x, eαz(θtω)vk)vkdx

+ e−αz(θtω)
∫
Ok
g(t, x)vk(x)dx.
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By the boundary condition (3.13), all above integrals over the bounded domain Ok
can be replaced by that over the entire space Rn, and hence we get

1

2

d

dt
‖vk‖2 + a(vk, vk) = αz(θtω)‖vk‖2 + e−αz(θtω)

∫
Rn
f(t, x, eαz(θtω)vk)vkdx

+ e−αz(θtω)(g(t), vk). (3.19)

By (3.3), the nonlinear term in (3.19) satisfies

e−αz(θtω)
∫
Rn
f(t, x, eαz(θtω)vk)vkdx ≤− βe(p−2)αz(θtω)

∫
Rn
|vk|pdx

+ e−2αz(θtω)
∫
Rn
ψ1(t, x)dx.

(3.20)

It follows from (3.15) and (3.19)-(3.20) that for every k ∈ N,

d

dt
‖vk‖2 + 2λ‖vk‖2 + C(n, s)‖vk‖2Ḣs(Rn) + 2βe(p−2)αz(θtω)‖vk‖pLp(Rn)

≤ (1 + 2αz(θtω)) ‖vk‖2 + 2e−2αz(θtω)‖ψ1(t)‖L1(Rn) + e−2αz(θtω)‖g(t)‖2. (3.21)

By (3.21) and (3.16) we see that for every fixed ω ∈ Ω and T > 0, {vk}∞k=1 is
bounded in

L∞(τ, τ + T ;L2(Rn))
⋂
L2(τ, τ + T ;Hs(Rn))

⋂
Lp(τ, τ + T ;Lp(Rn)) (3.22)

and

{A(vk)}∞k=1 is bounded in L2(τ, τ + T ;H−s(Rn)). (3.23)

By (3.4) and (3.22) one can verify that

{f(t, ·, eαz(θtω)vk)}∞k=1 is bounded in Lq(τ, τ + T ;Lq(Rn)). (3.24)

As a consequence of (3.12) and (3.23)-(3.24) we find that for each fixed K ∈ N ,{
dvk
dt

}∞
k=1

is bounded in Lq(τ, τ + T ; (VK
⋂
Lp(Rn))∗). (3.25)

Note that 1 < q ≤ 2 since p ≥ 2 and p and q are conjugate exponents.

Step (ii). Existence of solutions of problem (3.8)-(3.9). By a diagonal process,
from (3.22)-(3.24), we find that there exists ṽ ∈ L2(Rn),

v ∈ L∞(τ, τ + T ;L2(Rn))
⋂
L2(τ, τ + T ;Hs(Rn))

⋂
Lp(τ, τ + T ;Lp(Rn))

and χ ∈ Lq(τ, τ + T ;Lq(Rn)) such that, up to a subsequence,

vk → v weak-star in L∞(τ, τ + T ;L2(Rn)), (3.26)

vk → v weakly in L2(τ, τ + T ;Hs(Rn)) and in Lp(τ, τ + T ;Lp(Rn)), (3.27)

f(t, ·, eαz(θtω)vk)→ χ weakly in Lq(τ, τ + T ;Lq(Rn)), (3.28)

dvk
dt
→ dv

dt
weakly in Lq(τ, τ + T ; (VK

⋂
Lp(Rn))∗), ∀K ∈ N, (3.29)

and

vk(τ + T, τ, ω)→ ṽ weakly in L2(Rn). (3.30)

Note that the embedding Hs(OK) ↪→ L2(OK) is compact. Note also that L2(OK)
↪→ (VK

⋂
Lp(Rn))∗ is continuous. Then by (3.22), (3.25) and the compactness result

in [37], after an appropriate diagonal process we find that, up to a subsequence,

vk → v strongly in L2(τ, τ + T ;L2(OK)), ∀K ∈ N. (3.31)
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By (3.31) and a diagonal process again, there exists a further subsequence (which
is still denoted by {vk}∞k=1) such that

vk → v for almost every (t, x) ∈ (τ, τ + T )× Rn. (3.32)

Since f is continuous, by (3.32) we get

f(t, x, eαz(θtω)vk)→ f(t, x, eαz(θtω)v) for almost every (t, x) ∈ (τ, τ + T )× Rn.
(3.33)

By (3.24) and (3.33) we infer from Mazur’s lemma that

f(t, ·, eαz(θtω)vk)→ f(t, ·, eαz(θtω)v) weakly in Lq(τ, τ + T ;Lq(Rn)). (3.34)

It follows from (3.28) and (3.34) that

χ = f(t, ·, eαz(θtω)v). (3.35)

Now, given ξ ∈ Hs(Rn)
⋂
Lp(Rn), denote by

ξK(x) = ρ(
|x|
K

)ξ(x) for all x ∈ Rn.

By simple computations, one can verify that for eachK ∈ N, ξK ∈ Hs(Rn)
⋂
Lp(Rn)

and

ξK → ξ in Hs(Rn)
⋂
Lp(Rn). (3.36)

For every k > K and φ ∈ C∞0 (τ, τ + T ), by (3.12)-(3.13) we obtain

−
∫ τ+T

τ

(vk, ξK)φ′dt+

∫ τ+T

τ

a(vk, ξK)φdt

= α

∫ τ+T

τ

z(θtω)(vk, ξK)φdt+

∫ τ+T

τ

e−αz(θtω)(f(t, ·, eαz(θtω)vk), ξK)(Lq,Lp)φdt

+

∫ τ+T

τ

e−αz(θtω)(g, ξK)φdt. (3.37)

Taking the limit of (3) as k →∞, by (3.26)-(3.28) and (3.35) we get

−
∫ τ+T

τ

(v, ξK)φ′dt+

∫ τ+T

τ

a(v, ξK)φdt

= α

∫ τ+T

τ

z(θtω)(v, ξK)φdt+

∫ τ+T

τ

e−αz(θtω)(f(t, ·, eαz(θtω)v), ξK)(Lq,Lp)φdt

+

∫ τ+T

τ

e−αz(θtω)(g, ξK)φdt. (3.38)

Taking the limit of (3.38) as K →∞, by (3.36) we find for all ξ ∈ Hs(Rn)
⋂
Lp(Rn),

−
∫ τ+T

τ

(v, ξ)φ′dt+

∫ τ+T

τ

a(v, ξ)φdt

= α

∫ τ+T

τ

z(θtω)(v, ξ)φdt+

∫ τ+T

τ

e−αz(θtω)(f(t, ·, eαz(θtω)v), ξ)(Lq,Lp)φdt

+

∫ τ+T

τ

e−αz(θtω)(g, ξ)φdt,
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and hence we obtain for all ξ ∈ Hs(Rn)
⋂
Lp(Rn),

d

dt
(v, ξ) + a(v, ξ) =αz(θtω)(v, ξ) + e−αz(θtω)(f(t, ·, eαz(θtω)v), ξ)(Lq,Lp)

+ e−αz(θtω)(g, ξ)
(3.39)

in the sense of distribution on (τ, τ + T ).
To prove the continuity of v : [τ,∞) → L2(Rn), we notice that v ∈ L2(τ, τ +

T ;Hs(Rn))
⋂
Lp(τ, τ + T ;Lp(Rn)) and dv

dt ∈ L2(τ, τ + T ;H−s(Rn)) + Lq(τ, τ +
T ;Lq(Rn)) by (3.27) and (3.29), respectively. Then by the argument of [37] we
infer that v ∈ C([τ, τ + T ], L2(Rn)) and

1

2

d

dt
‖v‖2 = (

dv

dt
, v)(H−s+Lq,Hs

⋂
Lp) for almost every t ∈ (τ, τ + T ). (3.40)

It follows from (3.39) and (3.40) that

1

2

d

dt
‖v‖2 + a(v, v) =αz(θtω)(v, v) + e−αz(θtω)(f(t, ·, eαz(θtω)v), v)(Lq,Lp)

+ e−αz(θtω)(g, v),
(3.41)

which yields the desired energy equation (3.18).
In what follows, we show v(τ) = vτ and v(τ + T ) = ṽ. To that end, we take

φ ∈ C1([τ, τ + T ]) and ξ ∈ Hs(Rn)
⋂
Lp(Rn). Similar to (3), by (3.12)-(3.14) we

get, for every k > K,

(vk(τ+T ), ξK)φ(τ+T )−(vk(τ), ξK)φ(τ) =

∫ τ+T

τ

(vk, ξK)φ′dt−
∫ τ+T

τ

a(vk, ξK)φdt

+ α

∫ τ+T

τ

z(θtω)(vk, ξK)φdt+

∫ τ+T

τ

e−αz(θtω)(f(t, ·, eαz(θtω)vk), ξK)(Lq,Lp)φdt

+

∫ τ+T

τ

e−αz(θtω)(g, ξK)φdt. (3.42)

As before, by (3.14), (3.26)-(3.28), (3.30) and (3.35) we obtain from (3) that, as
k →∞,

(ṽ, ξK)φ(τ + T )− (vτ , ξK)φ(τ) =

∫ τ+T

τ

(v, ξK)φ′dt−
∫ τ+T

τ

a(v, ξK)φdt

+α

∫ τ+T

τ

z(θtω)(v, ξK)φdt+

∫ τ+T

τ

e−αz(θtω)(f(t, ·, eαz(θtω)v), ξK)(Lq,Lp)φdt

+

∫ τ+T

τ

e−αz(θtω)(g, ξK)φdt.

AsK →∞ in the above equality, by (3.36) we find that for all ξ ∈ Hs(Rn)
⋂
Lp(Rn),

(ṽ, ξ)φ(τ + T )− (vτ , ξ)φ(τ) =

∫ τ+T

τ

(v, ξ)φ′dt−
∫ τ+T

τ

a(v, ξ)φdt

+α

∫ τ+T

τ

z(θtω)(v, ξ)φdt+

∫ τ+T

τ

e−αz(θtω)(f(t, ·, eαz(θtω)v), ξ)(Lq,Lp)φdt

+

∫ τ+T

τ

e−αz(θtω)(g, ξ)φdt. (3.43)

On the other hand, by (3.39) we find that the right-hand side of the equality (3.43)
is given by

(v(τ + T ), ξ)φ(τ + T )− (v(τ), ξ)φ(τ)
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and hence we get

(v(τ + T ), ξ)φ(τ + T )− (v(τ), ξ)φ(τ) = (ṽ, ξ)φ(τ + T )− (vτ , ξ)φ(τ). (3.44)

By choosing φ ∈ C1([τ, τ + T ]) with φ(τ) = 1 and φ(τ + T ) = 0, we get from (3.44)
that for all ξ ∈ Hs(Rn)

⋂
Lp(Rn),

(v(τ), ξ) = (vτ , ξ). (3.45)

Similarly, by choosing φ ∈ C1([τ, τ + T ]) with φ(τ) = 0 and φ(τ + T ) = 1, we get
from (3.44) that for all ξ ∈ Hs(Rn)

⋂
Lp(Rn),

(v(τ + T ), ξ) = (ṽ, ξ). (3.46)

By (3.45)-(3.46) we obtain

v(τ) = vτ and v(τ + T ) = ṽ in L2(Rn), (3.47)

which along with (3.30) implies that

vk(τ + T, τ, ω)→ v(τ + T ) weakly in L2(Rn). (3.48)

Similar to (3.48), one can verify that for every t ≥ τ , as k →∞,

vk(t, τ, ω)→ v(t) weakly in L2(Rn). (3.49)

Note that (3.39) and (3.47) indicate that v is a solution of problem (3.8)-(3.9)
in the sense of Definition 3.1, and (3.41) shows that v satisfies the energy equation
(3.18).

Step (iv). Uniqueness and measurability of solutions. Suppose v1 and v2
are solutions of (3.8)-(3.9). Then for ṽ = v1 − v2 we have

dṽ

dt
+A(v1 − v2)

= αz(θtω)ṽ + e−αz(θtω)
(
f(t, ·, eαz(θtω)v1)− f(t, ·, eαz(θtω)v2)

)
from which and (3.5) we find that for every T > 0, there exists c1 > 0 such that for
all t ∈ [τ, τ + T ],

d

dt
‖ṽ‖2 ≤ c1‖ṽ‖2.

Then the uniqueness and continuity of solutions in initial data in L2(Rn) follows
immediately.

Since the solution of problem (3.8)-(3.9) is unique, by (3.49) we see that the
whole sequence (not just a subsequence) vk(t, τ, ω) → v(t, τ, ω) weakly in L2(Rn)
for any t ≥ τ and ω ∈ Ω. Because vk(t, τ, ω) is measurable in ω ∈ Ω as proved in
[54], we infer that the weak limit v(t, τ, ω) is also measurable in ω, which completes
the proof.

Based on Theorem 3.2, we can define a continuous cocycle for problem (3.1)-
(3.2). Note that if v is a solution of (3.8)-(3.9), then by (3.7) we see that u is a
solution of (3.1)-(3.2) where u is given by

u(t, τ, ω, uτ ) = eαz(θtω)v(t, τ, ω, vτ )

with uτ = eαz(θτω)vτ . Define a mapping Φ : R+ × R× Ω× L2(Rn) → L2(Rn) such
that for every t ∈ R+, τ ∈ R, ω ∈ Ω and uτ ∈ L2(Rn),

Φ(t, τ, ω, uτ ) = u(t+ τ, τ, θ−τω, uτ ) = eαz(θtω)v(t+ τ, τ, θ−τω, vτ ), (3.50)



694 HONG LU, JIANGANG QI, BIXIANG WANG AND MINGJI ZHANG

where vτ = e−αz(ω)uτ . It follows from Theorem 3.2 that Φ is a continuous cocycle
in L2(Rn) over (Ω,F , P, {θt}t∈R).The main purpose of this paper is to prove the
existence of attractors of Φ in L2(Rn). To that end, we recall a family of bounded
nonempty subsets of L2(Rn), D = {D(τ, ω) : τ ∈ R, ω ∈ Ω}, is tempered if for every
c > 0, τ ∈ R and ω ∈ Ω,

lim
t→−∞

ect‖D(τ + t, θtω)‖ = 0,

where the notation ‖D‖ for a subset D of L2(Rn) is understood as ‖D‖ = sup
u∈D
‖u‖.

The collection of all tempered families of bounded nonempty subsets of L2(Rn) is
denoted D, that is,

D = {D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} : D is tempered in L2(Rn)}. (3.51)

In this case, a D-pullback attractor is also called a tempered attractor since D given
by (3.51) contains all tempered families of bounded nonempty subsets of L2(Rn).

From now on, we assume that for every τ ∈ R,∫ 0

−∞
eλs
(
‖g(s+ τ, ·)‖2 + ‖ψ1(s+ τ, ·)‖L1(Rn)

)
ds <∞. (3.52)

When deriving the existence of tempered pullback absorbing sets, we will further
assume that g and ψ1 are tempered in the sense that for every c > 0,

lim
r→−∞

ecr
∫ 0

−∞
eλs
(
‖g(s+ r, ·)‖2 + ‖ψ1(s+ r, ·)‖L1(Rn)

)
ds = 0. (3.53)

It is clear that (3.52) and (3.53) do not imply that g is bounded in L2(Rn) when
t→∞.

4. Uniform estimates of solutions. In this section, we derive uniform estimates
on the solutions of the non-local fractional stochastic equations in Hs(Rn) as well
as the uniform estimates on the tails of solutions for large space and time variables.
The estimates in L2(Rn) are given below.

Lemma 4.1. Under conditions (3.3)-(3.5) and (3.52), for every σ ∈ R, τ ∈ R,
ω ∈ Ω and D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exists T = T (τ, ω,D, σ) > 0
such that for all t ≥ T , the solution v of system (3.8)-(3.9) satisfies

‖v(σ, τ − t, θ−τω, vτ−t)‖2 +

∫ σ−τ

−t
A(s)‖v(s+ τ, τ − t, θ−τω, vτ−t)‖2Hs(Rn)ds

+2β

∫ σ−τ

−t
A(s)e(p−2)αz(θsω)‖v(s+ τ, τ − t, θ−τω, vτ−t)‖pLp(Rn)ds

≤M1 +M1

∫ σ−τ

−∞
A(s)e−2αz(θsω)(‖g(s+ τ)‖2 + ‖ψ1(s+ τ)‖L1(Rn))ds,

where A(s) = e
5
4λ(s−σ+τ)−2α

∫ s
σ−τ z(θrω)dr, eαz(θ−tω)vτ−t ∈ D(τ − t, θ−tω) and M1

is a positive number independent of τ , ω and D.

Proof. The proof is similar to the case of bounded domains as in [54]. For the
reader’s convenience, we here sketch the main idea. First, by (3.3) and (3.18) we
have

d

dt
‖v(t, τ, ω, vτ )‖2 + 2λ‖v‖2 + C(n, s)‖v‖2

Ḣs
+ 2βe(p−2)αz(θtω)

∫
Rn
|v|pdx
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≤ 2αz(θtω)‖v‖2 + 2e−αz(θtω)
∫
Rn
g(t, x)vdx+ 2e−2αz(θtω)‖ψ1(t)‖L1(Rn). (4.1)

Note that the Young inequality implies

2e−αz(θtω)
∫
Rn
g(t, x)vdx ≤ 1

4
λ‖v‖2 + 4λ−1e−2αz(θtω)‖g(t)‖2,

which along with (4.1) yields

d

dt
‖v(t, τ, ω, vτ )‖2 + (

5

4
λ− 2αz(θtω))‖v‖2 +

1

2
λ‖v‖2

+C(n, s)‖v‖2
Ḣs

+ 2βe(p−2)αz(θtω)
∫
Rn
|v|pdx

≤ 4λ−1e−2αz(θtω)‖g(t)‖2 + 2e−2αz(θtω)‖ψ1(t)‖L1(Rn). (4.2)

Solving (4.2) for ‖v‖2 on the interval (τ − t, σ) by introducing the integrating factor

e
5
4λt−2α

∫ t
0
z(θrω)dr, and then replacing ω by θ−τω we obtain

‖v(σ, τ − t, θ−τω, vτ−t)‖2 +
λ

2

∫ σ

τ−t
e

5
4
λ(s−σ)−2α

∫ s
σ z(θr−τω)dr‖v(s, τ − t, θ−τω, vτ−t)‖2ds

+C

∫ σ

τ−t
e

5
4λ(s−σ)−2α

∫ s
σ
z(θr−τω)dr‖v(s, τ − t, θ−τω, vτ−t)‖2Ḣsds

+2β

∫ σ

τ−t
e

5
4λ(s−σ)−2α

∫ s
σ
z(θr−τω)dre(p−2)αz(θs−τω)‖v(s, τ − t, θ−τω, vτ−t)‖pLp(Rn)ds

≤ e 5
4λ(τ−t−σ)−2α

∫ τ−t
σ

z(θr−τω)dr‖vτ−t‖2

+4λ−1
∫ σ

τ−t
e

5
4λ(s−σ)−2α

∫ s
σ
z(θr−τω)dre−2αz(θs−τω)‖g(s)‖2ds

+ 2

∫ σ

τ−t
e

5
4λ(s−σ)−2α

∫ s
σ
z(θr−τω)dre−2αz(θs−τω)‖ψ1(s)‖L1(Rn)ds. (4.3)

Since eαz(θ−tω)vτ−t ∈ D(τ − t, θ−tω) with D ∈ D, by (3.6) one can verify that

lim
t→∞

e
5
4λ(τ−t−σ)−2α

∫ τ−t
σ

z(θr−τω)dr‖vτ−t‖2 = 0. (4.4)

On the other hand, by (3.52) and (3.6) we find that for all σ ≥ τ − t,∫ σ

τ−t
e

5
4λ(s−σ)−2α

∫ s
σ
z(θr−τω)dre−2αz(θs−τω)‖g(s)‖2ds

≤
∫ σ

−∞
e

5
4λ(s−σ)−2α

∫ s
σ
z(θr−τω)dre−2αz(θs−τω)‖g(s)‖2ds <∞ (4.5)

and ∫ σ

τ−t
e

5
4λ(s−σ)−2α

∫ s
σ
z(θr−τω)dre−2αz(θs−τω)‖ψ1(s)‖L1(Rn)ds

≤
∫ σ

−∞
e

5
4λ(s−σ)−2α

∫ s
σ
z(θr−τω)dre−2αz(θs−τω)‖ψ1(s)‖L1(Rn)ds <∞. (4.6)

It follows from (4.3)-(4) that there exists T = T (τ, ω,D, α) > 0 such that for all
t ≥ T ,

‖v(σ, τ − t, θ−τω, vτ−t)‖2 +
λ

2

∫ σ

τ−t
e

5
4
λ(s−σ)−2α

∫ s
σ z(θr−τω)dr‖v(s, τ − t, θ−τω, vτ−t)‖2ds

+C(n, s)

∫ σ

τ−t
e

5
4λ(s−σ)−2α

∫ s
σ
z(θr−τω)dr‖v(s, τ − t, θ−τω, vτ−t)‖2Ḣsds
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+2β

∫ σ

τ−t
e

5
4λ(s−σ)−2α

∫ s
σ
z(θr−τω)dre(p−2)αz(θs−τω)‖v(s, τ − t, θ−τω, vτ−t)‖pLp(Rn)ds

≤ 1 + 4λ−1
∫ σ

−∞
e

5
4λ(s−σ)−2α

∫ s
σ
z(θr−τω)dre−2αz(θs−τω)‖g(s)‖2ds

+ 2

∫ σ

−∞
e

5
4λ(s−σ)−2α

∫ s
σ
z(θr−τω)dre−2αz(θs−τω)‖ψ1(s)‖L1(Rn)ds. (4.7)

After changing of variables, the desired estimates follows from (4.7) immediately.

As a consequence of Lemma 4.1, we see that problem (3.8)-(3.9) has a tempered
pullback absorbing set in L2(Rn).

Corollary 4.2. Under conditions (3.3)-(3.5) and (3.53), for every τ ∈ R, ω ∈ Ω
and D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exists T = T (τ, ω,D, α) > 0 such
that the solution v of (3.8)-(3.9) with eαz(θ−tω)vτ−t ∈ D(τ − t, θ−tω) satisfies, for
all t ≥ T ,

v(τ, τ − t, θ−τω, vτ−t) ∈ B(τ, ω), (4.8)

where B = {B(τ, ω) : τ ∈ R, ω ∈ Ω} is given by

B(τ, ω) = {v ∈ L2(Rn) : ‖v‖2 ≤ R(τ, ω)},

with R = R(τ, ω) being a positive number given by

R = M1 +M1

∫ 0

−∞
e

5
4λs−2α

∫ s
0
z(θrω)dre−2αz(θsω)(‖g(s+ τ)‖2 +‖ψ1(s+ τ)‖L1(Rn))ds.

(4.9)
Moreover, R = {R(τ, ω) : τ ∈ R, ω ∈ Ω} is tempered in the sense that for any
c > 0,

lim
t→∞

e−ctR(τ − t, θ−tω) = 0. (4.10)

Proof. (4.8) follows from Lemma 4.1 when σ = τ , and the convergence of (4.10)
can be proved in the same way as in the case of bounded domains which can be
found in [54]. The details are omitted here.

Next, we derive uniform estimates of solutions in Hs(Rn) for which we further
assume that the function ψ4 in (3.5) belongs to L∞(R, L∞(Rn)) and the nonlinearity
f satisfies, for all t, u ∈ R and x, y ∈ Rn,

|f(t, x, u)− f(t, y, u)| ≤ |ψ5(x)− ψ5(y)| (4.11)

where ψ5 ∈ Hs(Rn).

Lemma 4.3. Under conditions (3.3)-(3.5), (4.11) and (3.52), for every τ ∈ R,
ω ∈ Ω and D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exists T = T (τ, ω,D, α) > 0
such that for any t ≥ T , the solution v of problem (3.8)-(3.9) with eαz(θ−tω)vτ−t ∈
D(τ − t, θ−tω) satisfies

‖v(τ, τ − t, θ−τω, vτ−t)‖2Hs(Rn)

≤M2+M2

∫ 0

−∞
e

5
4λs−2α

∫ s
0
z(θrω)dre−2αz(θsω)(1+‖g(s+τ)‖2+‖ψ1(s+τ)‖L1(Rn))ds,

where M2 is a positive number independent of τ , ω and D.
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Proof. Multiplying (3.8) by (−∆)sv, we obtain

d

dt
‖(−∆)

s
2 v‖2+2‖(−∆)sv‖2 + 2(λ− αz(θtω))‖(−∆)

s
2 v‖2

= 2e−αz(θtω)
(
f(t, x, eαz(θtω)v), (−∆)sv

)
+ 2e−αz(θtω)(g(t, x), (−∆)sv).

(4.12)

We now estimate the right-hand side of (4.12). For the first term, by (3.5) and
(4.11) we have with Cns = C(n, s)

2e−αz(θtω)
(
f(t, x, eαz(θtω)v), (−∆)sv

)
= 2e−αz(θtω)

(
(−∆)

s
2 f(t, x, eαz(θtω)v), (−∆)

s
2 v
)

= Cnse
−αz(θtω)

(
f(t, ·, eαz(θtω)v), v

)
Ḣs(Rn)

= Cnse
−αz(θtω)

∫
Rn

∫
Rn

(
f(t, x, eαz(θtω)v(x))− f(t, y, eαz(θtω)v(y))

)
B(x, y)dxdy

= Cnse
−αz(θtω)

∫
Rn

∫
Rn

(
f(t, x, eαz(θtω)v(x))− f(t, y, eαz(θtω)v(x))

)
B(x, y)dxdy

+ Cnse
−αz(θtω)

∫
Rn

∫
Rn

(
f(t, y, eαz(θtω)v(x))− f(t, y, eαz(θtω)v(y))

)
B(x, y)dxdy

≤ Cnse−αz(θtω)
∫
Rn

∫
Rn

|ψ5(x)− ψ5(y)||v(x)− v(y)|
|x− y|n+2s

dxdy

+ Cns

∫
Rn

∫
Rn

ψ4(t, y)(v(x)− v(y))2

|x− y|n+2s
dxdy

≤ Cnse−αz(θtω)‖ψ5‖Ḣs(Rn)‖v‖Ḣs(Rn) + Cns‖ψ4‖L∞(R,L∞(Rn))‖v‖2Ḣs(Rn)

≤ 1

2
Cnse

−2αz(θtω)‖ψ5‖2Hs(Rn) + (
1

2
+ ‖ψ4‖L∞(R,L∞(Rn)))Cns‖v‖2Ḣs(Rn)

≤ 1

2
Cnse

−2αz(θtω)‖ψ5‖2Hs(Rn) + (1 + 2‖ψ4‖L∞(R,L∞(Rn)))‖(−∆)
s
2 v‖2,

(4.13)

where

B(x, y) =
v(x)− v(y)

|x− y|n+2s
.

For the last term on the right-hand side of (4.12), we have

|2e−αz(θtω)(g(t, x), (−∆)sv)| ≤ 1

2
‖(−∆)sv‖2 + 2e−2αz(θtω)‖g(t)‖2. (4.14)

It follows from (4.12)-(4.14) that

d

dt
‖(−∆)

s
2 v‖2+‖(−∆)sv‖2 + 2(λ− αz(θtω))‖(−∆)

s
2 v‖2

≤ c1‖(−∆)
s
2 v‖2 +

(
2‖g(t)‖2 + c2

)
e−2αz(θtω).

(4.15)

Given t ∈ R+, τ ∈ R and ω ∈ Ω, let s ∈ (τ − 1, τ). Multiplying (4.15) by

e
∫ t
0
( 5
4λ−2αz(θsω))ds and integrating over (s, τ), we infer that

‖(−∆)
s
2 v(τ, τ − t, ω, vτ−t)‖2 ≤ e

∫ s
τ
( 5
4λ−2αz(θξω))dξ‖(−∆)

s
2 v(s, τ − t, ω, vτ−t)‖2
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+

∫ τ

s

e
∫ ς
τ
( 5
4λ−2αz(θξω))dξc1‖(−∆)

s
2 v(ς, τ − t, ω, vτ−t)‖2dς

+

∫ τ

s

e
∫ ς
τ
( 5
4λ−2αz(θξω))dξ(2‖g(ς)‖2+c2)e−2αz(θςω)dς.

(4.16)

Integrating again with respect to s on (τ − 1, τ), we obtain

‖(−∆)
s
2 v(τ, τ − t, ω, vτ−t)‖2

≤
∫ τ

τ−1
e
∫ s
τ
( 5
4λ−2αz(θξω))dξ‖(−∆)

s
2 v(s, τ − t, ω, vτ−t)‖2ds

+

∫ τ

τ−1
e
∫ ς
τ
( 5
4λ−2αz(θξω))dξc1‖(−∆)

s
2 v(ς, τ − t, ω, vτ−t)‖2dς

+

∫ τ

τ−1
e
∫ ς
τ
( 5
4λ−2αz(θξω))dξ(2‖g(ς)‖2+c2)e−2αz(θςω)dς.

(4.17)

Substituting θ−τω for ω, then we deduce from (4.17) that,

‖(−∆)
s
2 v(τ, τ − t, θ−τω, vτ−t)‖2

≤
∫ τ

τ−1
e
∫ s
τ
( 5
4λ−2αz(θξ−τω))dξ‖(−∆)

s
2 v(s, τ − t, θ−τω, vτ−t)‖2ds

+

∫ τ

τ−1
e
∫ ς
τ
( 5
4λ−2αz(θξ−τω))dξc1‖(−∆)

s
2 v(ς, τ − t, θ−τω, vτ−t)‖2dς

+

∫ τ

τ−1
e
∫ ς
τ
( 5
4λ−2αz(θξ−τω))dξ(2‖g(ς)‖2+c2)e−2αz(θς−τω)dς

≤
∫ 0

−1
e
∫ s
0
( 5
4λ−2αz(θξω))dξ‖(−∆)

s
2 v(s+ τ, τ − t, θ−τω, vτ−t)‖2ds

+

∫ 0

−1
e
∫ ς
0
( 5
4λ−2αz(θξω))dξc1‖(−∆)

s
2 v(ς + τ, τ − t, θ−τω, vτ−t)‖2dς

+

∫ 0

−1
e
∫ ς
0
( 5
4λ−2αz(θξω))dξ(2‖g(ς + τ)‖2+c2)e−2αz(θςω)dς

(4.18)

which along with Lemma 4.1 for σ = τ implies the desired estimates.

To prove the pullback asymptotic compactness of the cocycle associated with the
problem (3.8)-(3.9) on the unbounded domain Rn, we need to derive the uniform
estimates on the tail parts of the solutions for large space variables when time is
large enough.

Lemma 4.4. Suppose that (3.3)-(3.5) and (3.52) hold. Then for every ε > 0, τ ∈ R,
ω ∈ Ω and D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exists T = T (τ, ω,D, ε, α) > 0,
K = K(τ, ω, ε) ≥ 1 such that for all t ≥ T and k ≥ K, the solution v of problem
(3.8)-(3.9) with eαz(θ−tω)vτ−t ∈ D(τ − t, θ−tω) satisfies∫

|x|≥k
|v(τ, τ − t, θ−τω, vτ−t)(x)|2dx ≤ ε.

Proof. Let χ(s) = 1− ρ(s) for all 0 ≤ s <∞ where ρ is the smooth function given
by (3.11). Then we find that 0 ≤ χ(s) ≤ 1 for all s ≥ 0 and

χ(s) =

{
0, if 0 ≤ s ≤ 1

2 ,
1, if s ≥ 1.

(4.19)
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Note that there exists a positive constant c such that |χ′(s)| ≤ c for all s ≥ 0.

Multiplying (3.8) by χ( |x|k )v, we obtain

1

2

d

dt

∫
Rn
χ

(
|x|
k

)
|v|2dx+ (λ− αz(θtω))

∫
Rn
χ

(
|x|
k

)
|v|2dx

+

∫
Rn

(−∆)sv χ

(
|x|
k

)
vdx

= e−αz(θtω)
∫
Rn
f(t, x, eαz(θtω)v)χ

(
|x|
k

)
vdx+ e−αz(θtω)

∫
Rn
g(t, x) χ

(
|x|
k

)
vdx.

(4.20)

For the third term on the left-hand side of (4.20), we have

−
∫
Rn

(−∆)sv χ

(
|x|
k

)
vdx = −

∫
Rn

(−∆)
s
2 v (−∆)

s
2

(
χ

(
|x|
k

)
v

)
dx

= −1

2
C(n, s)

∫
Rn

∫
Rn

(
χ
(
|x|
k

)
v(x)− χ

(
|y|
k

)
v(y)

) (
v(x)− v(y)

)
|x− y|n+2s

dxdy

= −1

2
C(n, s)

∫
Rn

∫
Rn

χ
(
|x|
k

) (
v(x)− v(y)

)2
|x− y|n+2s

dxdy

−1

2
C(n, s)

∫
Rn

∫
Rn

(
χ
(
|x|
k

)
− χ

(
|y|
k

)) (
v(x)− v(y)

)
v(y)

|x− y|n+2s
dxdy

≤ −1

2
C(n, s)

∫
Rn

∫
Rn

(
χ
(
|x|
k

)
− χ

(
|y|
k

)) (
v(x)− v(y)

)
v(y)

|x− y|n+2s
dxdy. (4.21)

Note that the right-hand side of (4.21) is controlled by

1

2
C(n, s)

∣∣∣∣∣∣
∫
Rn

∫
Rn

(
χ
(
|x|
k

)
− χ

(
|y|
k

)) (
v(x)− v(y)

)
v(y)

|x− y|n+2s

∣∣∣∣∣∣ dxdy

≤ 1

2
C(n, s)

∫
Rn
|v(y)|

∫
Rn

∣∣∣χ( |x|k )− χ( |y|k )∣∣∣ |v(x)− v(y)|

|x− y|n+2s
dx

 dy

≤ 1

2
C(n, s)‖v‖

∫
Rn

∫
Rn

∣∣∣χ( |x|k )− χ( |y|k )∣∣∣ |v(x)− v(y)|

|x− y|n+2s
dx

2

dy


1
2

≤ 1

2
C(n, s)‖v‖

∫
Rn

∫
Rn

∣∣∣χ( |x|k )− χ( |y|k )∣∣∣2
|x− y|n+2s

dx

∫
Rn

|v(x)− v(y)|2

|x− y|n+2s
dx

 dy


1
2

.

(4.22)
We now estimate the first integral in (4.22). Given y ∈ R, for z = x

k we have

∫
Rn

∣∣∣χ( |x|k )− χ( |y|k )∣∣∣2
|x− y|n+2s

dx =
1

k2s

∫
Rn

∣∣∣χ(|z|)− χ
(
|y|
k

)∣∣∣2
|z − y

k |n+2s
dz
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=
1

k2s

∫
Rn

∣∣∣χ(|ξ + y
k |)− χ

(
|y|
k

)∣∣∣2
|ξ|n+2s

dξ

=
1

k2s

∫
|ξ|≤1

∣∣∣χ(|ξ + y
k |)− χ

(
|y|
k

)∣∣∣2
|ξ|n+2s

dξ +
1

k2s

∫
|ξ|>1

∣∣∣χ(|ξ + y
k |)− χ

(
|y|
k

)∣∣∣2
|ξ|n+2s

dξ

≤ 1

k2s

∫
|ξ|≤1

|χ′(r)|2
∣∣|ξ + y

k | − |
y
k |
∣∣2

|ξ|n+2s
dξ +

4

k2s

∫
|ξ|>1

1

|ξ|n+2s
dξ

≤ c1
k2s

∫
|ξ|≤1

1

|ξ|n+2s−2 dξ +
4

k2s

∫
|ξ|>1

1

|ξ|n+2s
dξ.

Since s ∈ (0, 1), we see that the above integrals are convergent. Thus we get∫
Rn

∣∣∣χ( |x|k )− χ( |y|k )∣∣∣2
|x− y|n+2s

dx ≤ c2
k2s

, (4.23)

where c2 is a positive constant independent of k ∈ N and y ∈ Rn By (4.22)-(4.23)
we get

1

2
C(n, s)

∣∣∣∣∣∣
∫
Rn

∫
Rn

(
χ
(
|x|
k

)
− χ

(
|y|
k

)) (
v(x)− v(y)

)
v(y)

|x− y|n+2s

∣∣∣∣∣∣ dxdy
≤ 1

2
C(n, s)

√
c2 k

−s‖v‖

(∫
Rn

∫
Rn

|v(x)− v(y)|2

|x− y|n+2s
dxdy

) 1
2

≤ 1

2
C(n, s)

√
c2 k

−s‖v‖2Hs(Rn),

which together with (4.21) implies that

−
∫
Rn

(−∆)sv χ

(
|x|
k

)
vdx ≤ 1

2
C(n, s)

√
c2 k

−s‖v‖2Hs(Rn). (4.24)

For the first term on the right-hand side of (4.20), by (3.3) one has

e−αz(θtω)
∫
Rn
f(t, x, eβz(θtω)v)χ

(
|x|
k

)
vdx

≤ −βe−2αz(θtω)
∫
Rn
|eαz(θtω)v|pχ

(
|x|
k

)
dx+ e−2αz(θtω)

∫
Rn
ψ1(t, x)χ

(
|x|
k

)
dx

≤ e−2αz(θtω)
∫
Rn
|ψ1(t, x)|χ

(
|x|
k

)
dx.

(4.25)

For the second term on the right-hand side of (4.20), one has

e−αz(θtω)
∫
Rn
g(t, x)χ

(
|x|
k

)
vdx ≤ e−2αz(θtω)

λ

∫
Rn
χ

(
|x|
k

)
|g(t, x)|2dx

+
λ

4

∫
Rn
χ

(
|x|
k

)
|v|2dx.

(4.26)

Substituting (4.24)-(4.26) into (4.20), we deduce

d

dt

∫
Rn
χ

(
|x|
k

)
|v|2dx+ (

3

2
λ− 2αz(θtω))

∫
Rn
χ

(
|x|
k

)
|v|2dx
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≤ c3k−s‖v‖2Hs(Rn) + 2e−2αz(θtω)
∫
Rn
χ

(
|x|
k

)
|ψ1(t, x)|dx

+
2

λ
e−2αz(θtω)

∫
Rn
χ

(
|x|
k

)
|g(t, x)|2dx. (4.27)

Since s ∈ (0, 1) and c3 is independent of k, for any given ε > 0, there exists
K1 = K1(ε) ≥ 1 such that for all k ≥ K1,

c3k
−s‖v‖2Hs(Rn) ≤ ε‖v‖

2
Hs(Rn). (4.28)

On the other hand, by the definition of χ we find that∫
Rn
χ

(
|x|
k

)
(|g(t, x)|2 + |ψ1(t, x)|)dx ≤

∫
|x|≥ 1

2k

(|g(t, x)|2 + |ψ1(t, x)|)dx. (4.29)

By (4)-(4.29) we get, for all k ≥ K1,

d

dt

∫
Rn
χ

(
|x|
k

)
|v|2dx+ (

3

2
λ− 2αz(θtω))

∫
Rn
χ

(
|x|
k

)
|v|2dx

≤ ε‖v‖2Hs(Rn) + c4e
−2αz(θtω)

∫
|x|≥ 1

2k

(|g(t, x)|2 + |ψ1(t, x)|)dx. (4.30)

Given t ∈ R+, τ ∈ R and ω ∈ Ω, multiplying (4) by e
∫ t
0
( 5
4λ−2αz(θrω))dr and

integrating over (τ − t, τ), we get, for all k ≥ K1,∫
Rn
χ

(
|x|
k

)
|v(τ, τ − t, ω, vτ−t)|2dx−e

∫ τ−t
τ

( 5
4λ−2αz(θrω))dr

∫
Rn
χ

(
|x|
k

)
|vτ−t(x)|2dx

≤ ε
∫ τ

τ−t
e
∫ s
τ
( 5
4λ−2αz(θrω))dr‖v(s, τ − t, ω, vτ−t)‖2Hs(Rn)ds

+c4

∫ τ

τ−t

∫
|x|≥ 1

2k

e
∫ s
τ
( 5
4λ−2αz(θrω))dre−2αz(θsω)(g2(s, x) + |ψ1(s, x)|)dxds. (4.31)

Replacing ω by θ−τω in (4) we get, for all k ≥ K1,∫
Rn
χ

(
|x|
k

)
|v(τ, τ − t, θ−τω, vτ−t)|2dx

− e
∫ τ−t
τ

( 5
4λ−2αz(θr−τω))dr

∫
Rn
χ

(
|x|
k

)
|vτ−t(x)|2dx

≤ ε
∫ τ

τ−t
e
∫ s
τ
( 5
4λ−2αz(θr−τω))dr‖v(s, τ − t, θ−τω, vτ−t)‖2Hs(Rn)ds

+ c4

∫ τ

τ−t

∫
|x|≥ 1

2k

e
∫ s
τ
( 5
4λ−2αz(θr−τω))dre−2αz(θs−τω)(g2(s, x) + |ψ1(s, x)|)dxds.

(4.32)

After changing of variables in (4.32), we obtain, for all k ≥ K1,∫
Rn
χ

(
|x|
k

)
|v(τ, τ − t, θ−τω, vτ−t)|2dx

≤ e
∫−t
0

( 5
4λ−2αz(θrω))dr

∫
Rn
χ

(
|x|
k

)
|vτ−t(x)|2dx

+ ε

∫ 0

−t
e
∫ s
0
( 5
4λ−2αz(θrω))dr‖v(s+ τ, τ − t, θ−τω, vτ−t)‖2Hs(Rn)ds
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+c4

∫ 0

−t

∫
|x|≥ 1

2k

e
∫ s
0
( 5
4λ−2αz(θrω))dre−2αz(θsω)(g2(s+ τ, x) + |ψ1(s+ τ, x)|)dxds.

(4.33)
We now estimate the right-hand side of (4). For the first term, since eαz(θ−tω)vτ−t ∈
D(τ − t, θ−tω) we have

e
∫−t
0

( 5
4λ−2αz(θrω))dr

∫
Rn
χ

(
|x|
k

)
|vτ−t(x)|2dx

≤ e−
5
4
λt−2α

∫−t
0 z(θrω)dr‖vτ−t‖2 ≤ e−

5
4
λt−2α

∫−t
0 z(θrω)dre−2αz(θ−tω)‖D(τ − t, θ−tω)‖2.

By (3.6) and the fact that D ∈ D we find that the right-hand side of the above
inequality converges to zero as t→∞, and hence there exists T1 = T1(τ, ω,D, ε) > 0
such that for all t ≥ T1,

e
∫−t
0

( 5
4λ−2αz(θrω))dr

∫
Rn
χ

(
|x|
k

)
|vτ−t(x)|2dx ≤ ε. (4.34)

By Lemma 4.1 with σ = τ , we see that there exists T2 = T2(τ, ω,D, ε) ≥ T1 such
that for all t ≥ T2,

ε

∫ 0

−t
e
∫ s
0
( 5
4λ−2αz(θrω))dr‖v(s+ τ, τ − t, θ−τω, vτ−t)‖2Hs(Rn)ds ≤ εR(τ, ω), (4.35)

where R(τ, ω) is the number as in (4.9). For the last term in (4), by (3.6) and (3.52)
we find that∫ 0

−∞

∫
Rn
e
∫ s
0
( 5
4λ−2αz(θrω))dre−2αz(θsω)(g2(s+ τ, x) + |ψ1(s+ τ, x)|) <∞,

and hence there exists K2 = K2(τ, ω, ε) ≥ K1 such that for all k ≥ K2,

c4

∫ 0

−∞

∫
|x|≥ 1

2k

e
∫ s
0
( 5
4λ−2αz(θrω))dre−2αz(θsω)(g2(s+τ, x)+|ψ1(s+τ, x)|) ≤ ε. (4.36)

It follows from (4)-(4.36) that for all k ≥ K2 and t ≥ T2,∫
|x|≥k

|v(τ, τ − t, θ−τω, vτ−t)|2dx

≤
∫
Rn
χ

(
|x|
k

)
|v(τ, τ − t, θ−τω, vτ−t)|2dx ≤ ε(2 +R(τ, ω)).

This completes the proof.

5. Existence of random attractors. In this section, we prove the existence and
uniqueness of tempered pullback attractors for the non-local fractional stochastic
equation (3.1)-(3.2). To that end, we need to establish the existence of tempered
random absorbing sets and the pullback asymptotic compactness of the cocycle Φ.

Lemma 5.1. Under conditions (3.3)-(3.5) and (3.53), the cocycle Φ has a closed
measurable pullback absorbing set K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D where for
every τ ∈ R and ω ∈ Ω, the set K(τ, ω) is defined by

K(τ, ω) = {u ∈ L2(Rn) : ‖u‖2 ≤ e2αz(ω)R(τ, ω)},

where R(τ, ω) is the same number as in (4.9).
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Proof. First, by (3.6) and (4.10) we see that K ∈ D, that is, for every c > 0,

lim
t→∞

e−ct‖K(τ − t, θ−tω)‖ = 0.

On the other hand, by (3.7) we get

u(τ, τ − t, θ−τω, uτ−t) = eαz(ω)v(τ, τ − t, θ−τω, vτ−t) with uτ−t = eαz(θ−tω)vτ−t.
(5.1)

Then it follows from Corollary 4.2 that for any D ∈ D and uτ−t ∈ D(τ − t, θ−tω),
there exists T = T (τ, ω,D, α) > 0 such that for all t ≥ T ,

v(τ, τ − t, θ−τω, vτ−t) ∈ B(τ, ω), (5.2)

where B(τ, ω) is the same set as in (4.8). By (5.1)-(5.2) we find that for all t ≥ T ,

u(τ, τ − t, θ−τω, uτ−t) ∈ K(τ, ω),

which along with (3.50) implies that for all t ≥ T ,

Φ(t, τ − t, θ−tω, uτ−t) ∈ K(τ, ω).

This shows that K is a D-pullback absorbing set of Φ. It is clear that R(τ, ω) is
measurable in ω ∈ Ω, which implies the measurability of K(τ, ω) in ω ∈ Ω.

The uniform estimates of the solutions of problem (3.1)-(3.2) in Hs(Rn) is given
below.

Lemma 5.2. Under conditions (3.3)-(3.5), (4.11) and (3.52), for every τ ∈ R, ω ∈
Ω and D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exists T = T (τ, ω,D, α) > 0 such
that for any t ≥ T , the solution u of problem (3.1)-(3.2) with uτ−t ∈ D(τ − t, θ−tω)
satisfies

‖u(τ, τ − t, θ−τω, uτ−t)‖2Hs(Rn)

≤M3+M3

∫ 0

−∞
e

5
4λs−2α

∫ s
0
z(θrω)dre−2αz(θsω)(1+‖g(s+τ)‖2+‖ψ1(s+τ)‖L1(Rn))ds,

where M3 = M2e
2αz(ω) and M2 is the positive number as in Lemma 4.3.

Proof. This estimate follows from (5.1) and Lemma 4.3 directly.

Based on Lemma 4.4, one can derive the uniform estimates on the tails of solu-
tions of problem (3.1)-(3.2) as stated below.

Lemma 5.3. Suppose that (3.3)-(3.5) and (3.52) hold. Then for every ε > 0, τ ∈ R,
ω ∈ Ω and D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exists T = T (τ, ω,D, ε, α) > 0,
K = K(τ, ω, ε) ≥ 1 such that for all t ≥ T and k ≥ K, the solution u of problem
(3.1)-(3.2) with uτ−t ∈ D(τ − t, θ−tω) satisfies∫

|x|≥k
|u(τ, τ − t, θ−τω, uτ−t)(x)|2dx ≤ ε.

Proof. This is an immediate consequence of Lemma 4.4 together with the arguments
of the proof of Lemma 5.1. The details are omitted here.

The next lemma is concerned with the D-pullback asymptotic compactness of Φ.

Lemma 5.4. Under conditions (3.3)-(3.5), (4.11) and (3.53), for every τ ∈ R, ω ∈
Ω and D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, the sequence Φ(tn, τ−tn, θ−tnω, u0,n) has
a convergent subsequence in L2(Rn) whenever tn →∞ and u0,n ∈ D(τ−tn, θ−tnω).
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Proof. By (3.50) we have

Φ(tn, τ − tn, θ−tnω, u0,n) = u(τ, τ − tn, θ−τω, u0,n),

which along with Lemma 5.3 shows that for every ε > 0, τ ∈ R and ω ∈ Ω, there
exist K = K(τ, ω, ε) ≥ 1 and N1 = N1(τ, ω,D, ε) ≥ 1 such that for all n ≥ N1,

‖Φ(tn, τ − tn, θ−tnω, u0,n)‖L2(|x|≥K) ≤
ε

2
. (5.3)

By Lemma 5.2 we find that there exists N2 = N2(τ, ω,D, ε) ≥ N1 such that for all
n ≥ N2,

‖Φ(tn, τ − tn, θ2,−tnω, u0,n)‖Hs(|x|<K) ≤ L(τ, ω),

where L(τ, ω) is a positive constant. Since s ∈ (0, 1), the embedding Hs(|x| <
K) ↪→ L2(|x| < K) is compact, which together with (5.3) implies {Φ(tn, τ −
tn, θ2,−tnω, u0,n)}∞n=1 has a finite covering in L2(Rn) of balls of radii less than ε.
As a consequence, we infer that the sequence {Φ(tn, τ − tn, θ2,−tnω, u0,n)}∞n=1 is
precompact in L2(Rn).

We now present our main result of this paper as follows.

Theorem 5.5. Suppose (3.3)-(3.5), (4.11) and (3.53) hold. Then the cocycle Φ of
problem (3.1)-(3.2) has a unique D-pullback attractor A = {A(τ, ω) : τ ∈ R, ω ∈
Ω} ∈ D in L2(Rn).

Proof. This is an immediate consequence of Lemmas 5.1,5.4 and Proposition 2.4.

Regarding the periodicity of D-pullback attractors, we have the following result.

Theorem 5.6. Let (3.3)-(3.5), (4.11) and (3.53) hold. Assume further that for
each fixed x ∈ Rn and s ∈ R, the functions f(t, x, s), g(t, x) and ψ1(t, x) are T -
periodic in t ∈ R. Then the D-pullback attractor A of Φ is also T -periodic, that is,
A(τ + T, ω) = A(τ, ω) for all τ ∈ R and ω ∈ Ω.

Proof. Since f(t, x, s) and g(t, x) are T -periodic in t ∈ R, we find that the cocycle
Φ is also T -periodic. Since g(t, x) and ψ1(t, x) are T -periodic in t ∈ R, by Lemma
5.1 we see that the D-pullback absorbing set K is also T -periodic. Then the T -
periodicity of A follows from Proposition 2.5 immediately.
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