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ABSTRACT

We analyze both solitary and periodic wave solutions of a quartic Korteweg-de Vries (KdV) equation that incorporates multiple dissipative
effects. The investigation primarily focuses on the dynamical behavior within a two-dimensional invariant manifold. To establish the existence
of solitary waves, we employ the evaluation of the associated Abelian integral along a homoclinic loop, a method that offers significant insights
into both their existence and stability. Furthermore, we rigorously derive periodic traveling waves by analyzing the dynamics induced by
degenerate Hopf bifurcations, homoclinic bifurcations, and Poincaré bifurcations. These bifurcations play a pivotal role in identifying the
conditions under which a unique periodic traveling wave arises and scenarios where two distinct periodic waves coexist. Notably, we also
examine the intriguing coexistence of a solitary wave and a periodic wave. This comprehensive analysis sheds light on the intricate dynamics
of the KdV equation under the influence of multiple dissipative mechanisms, enriching our understanding of its complex wave phenomena.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0269545

Wave dynamics in nonlinear systems play a crucial role in many
physical phenomena, ranging from fluid dynamics to plasma
physics. In this study, we investigate the quartic Korteweg-de
Vries (KdV) equation, which models wave propagation under the
influence of multiple dissipative effects. By employing an Abelian
integral approach, we analyze the conditions for the existence and
stability of both solitary and periodic traveling waves. Our results
reveal intricate bifurcation structures, including degenerate Hopf
bifurcations, homoclinic bifurcations, and Poincaré bifurcations,
which dictate the emergence of distinct wave patterns. Notably,
our findings demonstrate that two periodic traveling waves can
coexist, contrasting with the previously established uniqueness
results for KdV-like equations. Additionally, we identify sce-
narios where a solitary wave and a periodic wave can coexist.
This research provides deeper insights into the complex interplay
of dissipation and nonlinearity in wave systems, advancing our
understanding of nonlinear wave phenomena in various scientific
and engineering contexts.

. INTRODUCTION

Over the past few decades, numerous nonlinear evolution
equations have been proposed to model a wide range of nonlin-
ear phenomena across various fields, including shallow water wave
motions in fluid dynamics, ion acoustic waves in plasmas, traf-
fic flow dynamics, and other physical systems. Among these, the
Korteweg-de Vries (KdV)-type equations have garnered significant
attention due to their remarkable mathematical properties and phys-
ical relevance. These equations are particularly notable for admitting
traveling wave solutions, known as solitary wave solutions, which
are believed to effectively describe the soliton phenomenon first
observed by Scott Russell in 1834. Furthermore, the KdV equation
is widely recognized as a prototypical example of an exactly solvable
equation. In recent years, several modified and generalized versions
of the KdV equation have been introduced and extensively stud-
ied, driven by both physical applications and mathematical interest
(Refs. 1-4 and references therein).
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Considering the generalized KdV equation
u + (”P)x + Upx = 0, (1)

it encompasses the classical KdV equation for p = 2 and the mod-
ified KdV equation for p = 3. Notably, this equation is completely
integrable for p = 2 and p = 3 but becomes nonintegrable for p = 4.
Consequently, traditional methods, such as the inverse scattering
transform, are not directly applicable to the quartic KdV equation,
necessitating careful consideration of existence, uniqueness, stabil-
ity, and asymptotic stability of solitons and collisions.”* The gen-
eralized KdV equation (1) is derived from Euler’s equation using
the reductive perturbation method, where higher-order terms are
truncated.

In addressing real-world problems, very often, it is essential
to take truncated higher-order terms and other weakly dissipa-
tive influences into consideration. For instance, in modeling wave
motions on a liquid layer over an inclined plane, Topper and
Kawahara’ derived the following system:

U+ Uty + Uy + AUy + Y e = 0. (2)

Under conditions of a long inclined plane and weak surface ten-
sion, the diffusion term u,, and the fourth-order dispersion term
Uy Decome negligible, leading to the perturbed KdV equation, as
discussed in®

Up + Uty + Uy T+ S(Mxx + uxxxx) =0, (3)

where ¢ is a small positive perturbation parameter. This equation,
known as the KdV equation with Kuramoto-Sivashinsky pertur-
bation, loses its integrability due to the dissipative terms, making
traditional methods, such as the Lax Pair method inapplicable
for deriving solitary and periodic waves. Nonetheless, the exis-
tence and uniqueness of periodic waves for (3) have been explored
in Refs. 8 and 9. For the modified KdV equation with the
Kuramoto-Sivashinsky dissipation,

s + Uty + U + €Uy + Urrr) = 0, 4)

the existence of solitary waves was established in Ref. 10, while peri-
odic traveling waves were derived using the Picard-Fuchs equation
method, a tool from algebraic geometry."'

When two fluids with distinct surface tensions come into con-
tact, or when a temperature gradient exists within a single fluid (e.g.,
when a liquid layer is heated from the air side), a tangential force
arises along the interface, resulting in fluid flow. This flow is driven
by the surface tension gradient, where the fluid with lower surface
tension pulls the fluid with higher surface tension toward it. This
phenomenon is referred to as the Marangoni effect or Marangoni
convection.'” Velarde'” analyzed the steady heating of a liquid layer
from the air side under the framework of the one-way long-wave
approximation and derived the following governing equation:

U+ Audy + Azt + s(kzuxx + Aglhyex + AS(““x)x) =0, (5)

where the nonlinear term (uu,), accounts for the Marangoni effect.””
The dissipative KdV equation (5) also governs wave evolution in a
shallow liquid layer, particularly in scenarios involving the transfer
of surface-active material across the surface'*"” or in modeling inter-
nal waves under shear conditions.'®'” The existence of solitary waves
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in Eq. (5) was rigorously proven in Ref. 18 using a dynamical sys-
tems approach. The periodic wave train was numerically verified in
Ref. 19 and rigorously proven in Ref. 20, demonstrating the persis-
tence of a unique periodic traveling wave under local dissipations.
Mansour" studied a modified KdV equation incorporating three
dissipative terms,

us + )"luzux + Asthoee + E(Aather + Aglaex + AS(uux)x) =0, (6)

proving that solitary waves persist under small dissipations. The
existence of periodic waves was established in Ref. 20.

Dissipation can also arise from nonlocal nonlinearity present
in shallow water models, as those demonstrated in Refs. 21-24. In
2023, the modified KdV equation with nonlocal dissipation and
weak fourth-order dispersion was studied in Ref. 22,

u + (uz(f* u))x + Uyex + Tlye = 0, (7)

where 0 < 7 < 1, and f * u is a convolution defined as
t
(fru(xt) = / St — )u(x, ts) ds,

with f(t) = 1 e~ 7; it was proved that Eq. (7) has a solitary wave or a
unique periodic wave under certain conditions.

Remark 1. The Kuramoto-Sivashinsky dissipation term
Uy + Usee has also been incorporated into the generalized Ben-
jamin-Bona-Mahony (BBM) equation, as reported in Refs. 25
and 27 as well as in the Camassa-Holm equation, as discussed in
Ref. 28. Furthermore, nonlocal dissipation induced by convolution
has been considered for the BBM equation in Refs. 23 and 24 and
similarly for the Camassa-Holm equation in Ref. 21 and for the
Degasperis—Procesi equation.”” In these studies, the existence of soli-
tary waves or a unique periodic traveling wave has been rigorously
established.

In this paper, we focus on the critical quartic KdV equation
with multiple dissipation mechanisms, specifically incorporating the
Kuramoto-Sivashinsky dissipation and Marangoni convection. It is
given by

ur + usux + e + & (Mt + )"Z(uux)x + A3lyn) = 0, (8)

where ¢ > 0 is a sufficiently small parameter, and X,, A,, and A5 are
treated as free parameters.

We demonstrate that the model considered in this work could
potentially be applied to study scenarios where nonlinear wave prop-
agation is affected by both intrinsic instabilities (KS dissipation)
and interfacial flows driven by surface tension gradients (Marangoni
convection). Our main interest lies in exploring the existence of
solitary waves and periodic waves, and their dynamics.

Our main findings are summarized in the following theorem.

Theorem 2. Let oy = — (% + %3), o = —(:)2% , 0 =g,

C,
and c represent the traveling wave speed associated with Eq. (8). The
following statements hold:

(i) Solitary wave solutions:
The equation admits a solitary wave solution if and only if the
triplet (oo, 1, 2) lies on a surface in R?, which is perturbed by
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a distance of O(¢) from the plane,

* 32030 (2)T (2
a‘og + ?0011 + 7;)? oy = 0, wherea* = %.
(ii) Small-amplitude periodic waves:
For any fixed wave speed c, there exist parameter values
(oo, a1, a2) in a neighborhood of ("72, —3"‘72,012), with a; # 0,
such that Eq. (8) supports two small-amplitude periodic trav-
eling waves. These waves emerge through a degenerate Hopf
bifurcation near the homogeneous state.
(iii) Large-amplitude periodic waves:
For any fixed wave speed ¢, there exist parameter values
(atg, 001, 002) such that Eq. (8) exhibits two periodic traveling
waves of large amplitudes. These waves arise due to a degenerate
homoclinic bifurcation.
(iv) Maximum number of periodic waves:
For any fixed wave speed ¢ and any (o, o1, ) € R?, Eq. (8)
admits at most two periodic traveling waves, which originate
from a Poincaré bifurcation.
(v) Bifurcation diagram:
When projected onto the plane oy = 1 in R® (see Fig. 1), the
bifurcation diagram consists of three bifurcation lines that divide
o, = 1 into five open regions, ¥, i = 1,2,3,4,5.
(v1) For (ag,01) € ¥3U ¥4, Eq. (8) has no periodic traveling
waves.
(v2) For (ag, 1) € #1 U ¥5, Eq. (8) admits exactly one periodic
traveling wave.
(v3) For (ag,a1) € 5, Eq. (8) admits two periodic traveling
waves.
(v4) For (ag,0ty) located in the line segment between D, and Dj,
Eq. (8) admits a solitary wave and a periodic wave.

We demonstrate that, in contrast to the unique existence
of a periodic traveling wave previously derived in Refs. 11, 20,
and 23-26 for the KdV-like equation, our study reveals the pres-
ence of two distinct periodic traveling waves. These waves differ in
amplitude but share the same wave speed. Our studies also show the
coexistence of a solitary wave and a periodic wave. To uncover these
solutions, we employ a variety of analytical mechanisms, includ-
ing a degenerate Hopf bifurcation, a homoclinic bifurcation, and
a Poincaré bifurcation. In previous studies, the primary approach
relied on analyzing the zeros of an Abelian integral by ensuring
monotonicity in the ratio of its constituent elements, which effec-
tively established the uniqueness of the zero. However, when these
techniques are applied to Eq. (8), they prove inadequate due to the
complex interplay of multiple dissipative terms, particularly those
associated with Kuramoto-Sivashinsky dissipation and Marangoni
convection. These dissipative effects introduce three fundamental
components into the Abelian integrals, whose intricate coupling
gives rise to multiple zeros, significantly complicating their deter-
mination. Estimating the number of zeros of an Abelian integral is
closely related to the weak Hilbert’s 16th problem.”

Furthermore, the heightened nonlinearity inherent in the
Hamiltonian, where the unperturbed Korteweg-de Vries (KdV)
equation has a polynomial degree of five—compounds the
complexity, as the associated Picard-Fuchs equation takes on
a four-dimensional structure. Traditional analytical methods are

ARTICLE
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FIG. 1. Bifurcation diagram for the equation (8). More precisely, the top
graph shows the bifurcation diagram projected on the plane a3 = 1, while
the bottom one shows the bifurcation digram projected on the Poincaré disk.
% atay + %m + % =0 represents the homoclinic bifurcation line,
% ap + a1 + 1 = 0'is the Hopf bifurcation line, and the curve connecting D4
at (3, —%) and D, at (0, = egﬁ*) indicates the saddle-node bifurcation of limit
cycles, Dy is the degenerate Hopf bifurcation point, D, is the degenerate homo-
clinic bifurcation point, and Ds at (]gggﬁ;i 13(120@;8*)) is the Hopf-homoclinic
bifurcation point.

insufficient to handle this complexity, necessitating alternative
approaches. Of particular interest is the Abelian integral (23)
defined on a normally hyperbolic manifold, which we examine
in Secs. II-IV, while this integral shares the same expression
as that employed in the classical study” on codimension-three
Bogdanov-Takens (BT) bifurcation. The Picard-Fuchs equation
approach used in Ref. 30 is not directly applicable to the Abelian
integral (23) in our framework.

The remainder of this paper is organized as follows: Sec. II
introduces bifurcation theory for near-Hamiltonian systems in the
context of the weak Hilbert’s 16th problem, alongside preliminary
lemmas. We then transform the infinite-dimensional dynamical
system represented by the PDE model (8) into a finite-dynamical
system, resulting in a regular perturbation problem on a normally
hyperbolic invariant manifold. In Sec. I1], we prove the existence of a
solitary wave and derive asymptotic expansions for the Abelian inte-
gral, a critical tool for investigating a degenerate Hopf bifurcation
and a homoclinic bifurcation on the normally hyperbolic manifold.
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Subsequently, we establish the fourth assertion of Theorem 2.
Section [V validates the fifth assertion of Theorem 2 and constructs
the corresponding bifurcation diagram.

Il. MECHANISMS OF BURSTING PERIODIC TRAVELING
WAVES

In this section, we introduce three mechanisms for burst-
ing periodic traveling waves utilizing the bifurcation theory of
near-Hamiltonian systems. Subsequently, we reduce the infinite-
dimensional dynamical systems of the partial differential equation
(PDE) (8) into a finite-dimensional dynamical system. More pre-
cisely, we derive a near-Hamiltonian system on a normally hyper-
bolic two-dimensional invariant manifold.

We briefly outline three mechanisms of bursting periodic orbits
(limit cycles) in near-Hamiltonian systems, which correspond to
periodic traveling waves in our framework.

A. Three mechanisms of bursting periodic traveling
waves and the weak Hilbert's 16th problem in
near-Hamiltonian systems

We consider a polynomial near-Hamiltonian system given by
x=H,(xy) +epxye), y=—Hixy +eqxye). (9)

Assuming that the unperturbed system (9).—, possesses a family of
clockwise closed orbits {L,} = {(x,y) : H(x,y) = h, h. < h < ht},
surrounding a center L, located at (x,, y.) (with H(x, y.) = h.) and
bounded by a homoclinic loop Ly, [defined by H(x, y) = h+]. Under
the perturbation, the periodic structure is disrupted, with the cen-
ter potentially transforming into a weak focus, the homoclinic loop
and periodic orbits breaking, and only a finite number of isolated
periodic orbits (limit cycles) persisting. These persisting limit cycles
are located near the center, near the homoclinic loop, or distributed
within the period annulus {L,}. The associated three mechanisms of
bursting limit cycles are known as a degenerate Hopf bifurcation, a
homoclinic bifurcation, and a Poincaré bifurcation, respectively. To
study the three mechanisms, a displacement map can be constructed
on the period annulus {L,} (see Refs. 31 and 32). Let (o (h), 0) be the
intersection of L, with the positive u axis, T the period of L, L, be
the positive orbit of (20) starting from (o (h),0) at time ¢ = 0, and
its first intersection point with the positive u axis at time t = T(¢) is
denoted by (7 (h, €), 0). Therefore, the difference between these two
points can be measured as

d(h,8) = H(r (h, £),0) — H(p(h),0))

~ [ an
Lpe

= / [Hy(x, ) (H,(x, ) + ep(x, 3, €))
Lh,s
+ H,(x, p) (—H,(x, y) + q(x,y,€))] dt

T(e)
= 8/ [q(x, y, €)H, (x, y) + p(x, y, €) Hy(x, )] dt
0

=¢eF(h,8,¢),

pubs.aip.org/aip/cha

where the vector § € R™ represents the coefficients of p(x, y, €) and
q(x, y, €). From the continuity theorem, one has

lin% Ly, =Ly, lin;n)yr(h,e) = p(h), lin?) T(e) =T.

Consequently, F(h,8,¢) — M(h,8) as ¢ — 0, leading to d(h,$)
= eM(h, §) + O(&?), where

M(h,$) = f q(x,»,0) dx — p(x, y,0) dy,
Ly

which is known as the Melnikov function or the Abelian integral for
the near-Hamiltonian system (9). The weak Hilbert’s 16th problem
inquires about the maximal number of zeros of M(h, §) for a given
nth-degree system (9), and it is fully resolved only for quadratic
near-Hamiltonian systems (see Ref. 32).

For sufficiently small ¢, the zeros of M(h, §) provide the zeros of
d(h, §) by an implicit function theorem, thereby yielding limit cycles
of system (9). The following theorem summarizes the relationship
between the zeros of M(h, §) and limit cycles of the system (9).

Theorem 3 (Poincaré-Pontrjagin-Andronov theorem,’*?).
For the system (9), one has

L. If M(h,8) = 0 and M'(h,3) # O, then there exists a hyperbolic
limit cycle Ly, of the system (9) such that L, — Ly ase — 0.

2. If M(h,8) = M'(h,8) = M"(h,8) = --- = M* D (h,8) =0 and
M® (h,8) # 0, then the system (9) has at most k limit cycles for
sufficiently small ¢ in the vicinity of Ly,.

3. The total number of isolated zeros of M(h, §) (taking into account
of their multiplicity) is an upper bound on the number of limit
cycles of the system (9) that bifurcate from the annulus {L}.

We demonstrate that when the homoclinic loop Ly, connects
a hyperbolic saddle and L, is an elementary center, d(h,§) can be
extended on the boundaries of {L;}. Furthermore,

(i) Zeros of M(h,8) located in a very small interval [k, h, + €;)
reveal limit cycles bursting by a degenerate Hopf bifurcation
from the center (x,, y.).

(ii) Zerosinavery small interval (h+ — €;, ht] reveal the limit cycles
emerging via a homoclinic bifurcation except for the alien limit
cycles, where ¢, and ¢, are positive and sufficiently small.

(iii) Zerosin a compact subset of (h, ht) characterize limit cycles of
system (9) by a Poincaré bifurcation.

The degenerate Hopf bifurcation and the homoclinic bifurcation
can be studied by locating zeros from the asymptotic expansions of
M(h,8) at h = h, and h = hy, in the related small intervals [h,, h,
+ €1) and (ht — €,, ht], respectively (see Ref. 31). Specifically, the
persistence of the homoclinic loop Ly, is ensured by the following
theorem.

Theorem 4 (Persistence of the homoclinic loop®'). Let

M(ht,81) = 0 for some & = 6+. If aM;};T,a) ls=s; 7 O, then there exist
a neighborhood U of Ly, a sufficiently small parameter &1, and a
differentiable function §*(¢) = 8+ + O(e) such that for 0 < |e| < &t
and ||§ — 8+|| < et, system (9) has a homoclinic loop if and only if
3 =46(e).
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B. Chebyshev criterion

In this subsection, we introduce a criterion that bounds the
maximum number of zeros of the function M(h, §) within a global
interval (h,, hy) for a specific class of Hamiltonian systems. This cri-
terion serves as a valuable tool in proving certain aspects of our main
results.

Definition 5. Let [j(x), [;(x), -+, Lu_»(x) and [,_;(x) be
analytic functions well defined on a real open interval _¢.

1. The continuous Wronskian of {ly(x),}(x),...,L_1(x)} for

xe Jis

lo(x) Ly - LX)
[ N (65 TR A €9
Wi, b, gl =| 70 T T
00 B0 - 15

where lfi) (x) is the jth order derivative of ;(x), j > 2.
2. The set {lo(x), [, (%), ..., L,—1(x)} is called a Chebyshev system if
any nontrivial linear combination,

Kolo(X) + 11l () + - - + K1 ln—1 (%),

has at most m — 1 isolated zeros on 7.

3. The ordered set {Iy(x), [; (%), ..., Lu_1(x)} is termed an extended
complete Chebyshev system (ECT-system) if for each i € {1,
2,...,m} any nontrivial linear combination,

kolo(x) + 11l () + - - + ki1 lim (%),

has at most i — 1 zeros with multiplicities accounted.

Let H(x, y) = U(x) + }'72 be an analytic function with the cen-
ter of the period annulus {L,} located at the origin. The projection
of {L,} onto the x axis forms an interval (x;,x,) with x; < 0 < x,,
and xU’(x) > 0 for all x € (x;, x,)\{0}. The equality U(x) = U(z(x))
defines an analytic involution z = z(x) for all x € (x;, x,). Define

Lih) = ?{ n:(x)y* ' dx for h € (0,h*), (10)
Ty

where s € N and 7;(x) are analytic functions on (x5,x,), i =0,
1,...,m — 1. Furthermore, let

_ i i)
O U® U

The following lemma, adapted from Ref. 33, establishes a crucial
connection.

Lemma 6 (Ref. 33).  Consider the integrals defined in (10) and
the functions in (11). If s > m — 2 and {lp, L, . . ., l,_1} is an ECT sys-
tem on (x;,0) or (0,x,), then {I,, 1, - -- ,L,,_,} is an ECT system on
(0, h*).

li(x) (11)

C. Transformation from an infinite-dimensional
dynamical system of Eq. (8) into a finite-dimensional
one

In this subsection, we transform the infinite-dimensional
dynamical system described by the partial differential equation

pubs.aip.org/aip/cha

(PDE) (8) into a finite-dimensional dynamical system incorporat-
ing a singular perturbation. Subsequently, we reduce this finite-
dynamical system to a near-Hamiltonian system confined to a
two-dimensional invariant manifold. To achieve this, we introduce
the moving coordinate frame & = x — ct into Eq. (8), resulting in
du+ 3du+d3u+8 Ad2u+k d ( du +h d*u 0
—c—+uw—+ — — — (u— — ) =o0.
dg - dg o dgr T \Mdg? T g \dg) gt
(12)

By integrating (12) once, we obtain the third-order ordinary differ-
ential equation (ODE) with a singular perturbation,

+1 4+d2u+ )\du_’_)L du+)\ dPu 0 (13)
—Ccu —u - & —_— Uu—- —_— = U.
4 dg? Yag g T gl

This equation can be reformulated as a three-dimensional dynami-

cal system by introducing the variables v = % and w = j—;,
du dv
- =" = =W,
d d
s & (14)
dw 1,
EA3— =CcU— —U — W — EAV — EXuV.
dg 4
We can introduce the time rescaling £ = ¢¢ to Eq. (14) and obtain
du dv
— =gV, — =&w,
d d
S S (15)
dw 1,
AM— =cu— —uU" —wW— XV — EAUV.
dg¢ 4

It is known that the system (14) is referred to as the slow system,
while the system (15) is a fast system. As ¢ — 0, we have the so-
called limiting slow system,

du dv 1,
— =y, —=w, O=cu—-u" —w, (16)
dg dg 4
and the limiting fast system,
du dv 0 dw 1, (17)
— =0, —=0, —=cu—-u'—w
dg dg¢ dg¢ 4

Obviously, the dynamics of the system (16) are constrained to a
manifold, usually referred to as the critical manifold of the sys-
tem (16), which is defined by the resulting algebraic equation in (16);
that is,

7/0={(u,v,w)eRS:cu—iu‘*—w:O}. (18)

Note that the set % is exactly the equilibrium set of the system (17).
The following result can be established.

Lemma?7. The critical manifold %} defined in (18) is normally
hyperbolic.

Proof. The critical manifold is precisely the set of equilibria of
(17). The linearization of (17) at each point of (1, v, w) € #; has two
zero eigenvalues whose generalized eigenspace is the tangent space
of the two-dimensional critical manifold #; of equilibria, and the
other one eigenvalue is —1, whose eigenvector is not tangent to #5.
Thus, #; is normally hyperbolic and attracting. O

Chaos 35, 083118 (2025); doi: 10.1063/5.0269545
Published under an exclusive license by AIP Publishing

35,083118-5

§1:/2:€0 G20z Jequiaydas z


https://pubs.aip.org/aip/cha

Chaos ARTICLE

From the discussion in Ref. 34, there exists a two-dimensional
submanifold #; within R?, lying within the Hausdorff distance of
O(¢e) from #;. To investigate periodic traveling waves of (8), we
focus on periodic orbits of the ODE (15) residing on the invariant
manifold #;. We assume that #; is governed by

1
W, = {(u,v,w) eR:w=cu— A—Lu4 —I—Sg(u,v,e)} ,
where g(u,v,w) admits an approximation: g(u,v,&) = g(u,v)

+ZZI gi(u,v)e'. Substituting this g(u,v,w) into the slow
system (14), we have

d d 1
ghs [sa—iv+sa—‘5 (cu— A—Lu4 +£g> + (c— ua)v]

L4 L4
=cu— Zu — | cu— Zu + eg(u, v, €)) — eruv — Av. (19)
Comparing the coefficients of ¢ in (19), we can determine go(u, v)

= (—(Ay + A30) — Ayu+ A3u’)v  and, therefore, project the
system (14) onto #;, yielding

du

£y,

dg
dv 1, 5 )
E:cu—é—}u + & (— (A + A30) — Lu+ A3 u’) v+ O(e?).

For convenience in our later discussion, we introduce the scaling
transformations u = B1u, v = B, £ =« 5,;, and € = 46%8, where
B1 = (4o) 3 , B = 45 cg, andk = (c)f% drop the tildes for simplicity
and arrive at

du
=y,
d
, ¢ 20)
d_; =u(l—u’)+e¢ (ozo +ou+ o u3) v+ 0(82),
where
A A A
aoz—(—l+—3), Ol1=——22, o) = Az. (21)
4c 4 (40)3

To analyze solitary waves and periodic traveling waves of (8), we
focus on the persistent homoclinic loops and limit cycles of the trav-
eling wave ODE system (20). As discussed above, this amounts to
studying the zeros of an associated Abelian integral for the near-
Hamiltonian system (20). The unperturbed system (20).—, is a
Hamiltonian system with the Hamiltonian given by
Y B R

H(u,v) = 3 2 + 5 (22)
which governs the phase portraits by H(u, v) = h, as shown in Fig. 2.
In particular, H(u,v) = 0 defines the homoclinic loop I'y and a
family of periodic orbits

3
I, = {H(u,v) =he (—1—0,0)}

surrounding an elementary center located at (1,0) with H(1,0)
= —2. Correspondingly, the associated Abelian integral for the

pubs.aip.org/aip/cha

FIG. 2. The portraits of H(u, v) = h.

traveling wave ODE system (20) is given by

M (h, 8) =7€ (a0 + u + axu’) vu, (23)

Ty

where T, is defined on the normally hyperbolic manifold %, with
8 = (o, o1, 00;) € R®. The integrals frh uvdu, for i =0, 1, 3, are
referred to as the generating elements or generating Abelian inte-
grals. It is noteworthy that the Abelian integral (23) shares the same
form with the Abelian integral investigated in Ref. 30 for study-
ing the codimension-three Bogdanov-Takens bifurcation of cusp
type. However, the key difference lies in the context: .Z (h,§) is
defined within a normally hyperbolic manifold, with a higher-degree
Hamiltonian given by (22), whereas the Abelian integral for the
Bogdanov-Takens bifurcation utilizes a lower-degree Hamiltonian

of the form H(u,v) = % — % + “3—3 Despite the simplicity of the
Hamiltonian (22), analyzing the zeros of .# (h,5) poses a signifi-
cant challenge due to the increased dimensionality of the associated
Picard-Fuchs equation, rendering the intersection analysis of the
related functions particularly intricate. In Secs. II] and IV, we delve
into the local and global analysis of the zeros of .# (h, §), aiming
to uncover the number of periodic traveling waves arising from a
degenerate bifurcation, a homoclinic bifurcation, and a Poincaré
bifurcation.

lll. BURSTING PERIODIC TRAVELING WAVES VIA
A DEGENERATE HOPF BIFURCATION AND
A HOMOCLINIC BIFURCATION

A. Existence of a solitary wave

In this subsection, we rigorously establish the persistence of a
homoclinic loop in the immediate vicinity of I'y within the frame-
work of system (20). This endeavor serves to validate the claim (i) of
Theorem 2, specifically confirming the endurance of a solitary wave
in the dissipative KdV equation (8). To achieve this, we employ
Theorem 4 to derive an algebraic constraint involving (o, o1, &)
that ensures .# (h,8) vanishes at h = 0. Note that the loop I'y is

1
characterized by H(u,v) = 0 for 0 < u < (3)°. Through a metic-
ulous integration incorporating suitable variable transformations,
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we obtain
10 70a*
M(0,8) =a*ayg + —o; + ——ay,
9 91
sair(3)r(3) ERADN
where a* = — g Furthermore, is non-zero, con-
T 0(,1,002)

firming its non-triviality. In accordance with Theorem 4, the homo-
clinic bifurcation set is the plane given by

*
a‘ay + %al + 7(9)_;1(12 =0in R

Critically, the persistence of the homoclinic loop with minimal
deformation is contingent upon (v, 1, o2 ) residing within a slightly
distorted version of this plane, located within an O(g) neigh-
borhood. This precise characterization underscores the conditions
necessary for the existence of solitary waves in Eq. (8).

B. Degenerate Hopf bifurcation and a homoclinic
bifurcation on the invariant manifold 7,

To investigate the small-amplitude periodic traveling waves of
Eq. (8), we must delve into the zeros of .# (h,§) within a narrow
interval (—+5, —3 + €1). These zeros are intimately linked to the
periodic traveling waves of Eq. (8) via the mechanism of a degenerate
Hopf bifurcation. To achieve this goal, we require the asymptotic
expansion of .# (h, §) within the specified interval.
Upon introducing o = /3%, u = ‘/Tgft +1, and v =y to the
system (20), we obtain
dii y
do (24)
dy _ 2B 4w 3t

Here, §(iL, y) = (& + @10 + &, 0° + &3i°)y, where

1
5102\/?_0!04' {0514'{012, &1=§0l1+012,
VL o1
A = —ay, 03=—a,.
2 3 % 3=5%

The associated Hamiltonian takes the form

23 a3

9 +9+135’

) =2
~ u
H(Za)’)=%+?+

and the related Abelian integral is given by
; 3
M (h,8) = f G y)du =Y & jﬁ dydi. (25
Th i=0 Tn

Note that .# (h, 8) = #*(h, ) according to Remark 3.1.4 of Ref. 31.

pubs.aip.org/aip/cha

Lemma8. For0 < h+ % &« 1, one has

M(h,8) =d ht > ) +d (het = 2+d 2 3
T 10 ! 10 : 10

3 4

co((+3)).

2«/—7r

where

(g + o + ),
fyt

dl = _(7a0 + o — 20{2)

N
d2 1458 (4690{0 + 31011 - 35(12)
Proof. It suffices to study the asymptotic expansion of

//Z*(h, 38). Let ®*(u) = ﬁ(ﬁ,y) - y; and define

2d*
p =i )—u( uf”))

1
2 ~3 ~4 ’
u .
s Ty +24 )

Denote the left and right intersection points of the oval I, with the
u axis by (i1; (h), 0) and (i1, (h), 0), respectively. Then,

# (i) = ~ [2 (h + %)} (i) = [2 (h+ 13—0)] |

Furthermore,
) i) 3
% ﬁ’ydﬁ:Z/ o 2<h+—) —2®*(a) du
Iy iy (h) 10
ity (h)
=242 — ) - —p2 du
-/ul(m 10
1
[2(w+55)]* 3\ 1 @
=2«/§/ (h+—>——p2 —dp
()] 0/ 2" ¢@

j=0

(g

where i 4 j is even,

1 = /0[2("+?o)]

[

| 3\ 1
ht =) = —p2ptid
( +10) 5 PP dp,
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and the coefficients r;; can be computed as shown below,

. 469 217798
roo=1,10=—=, Tou= —, Tog = ———,
00 »2 79 T T 486”1 T 164025
243 734/3 4054/3
n)=——7F,>n"Nn3=———"——,TI5=— >
3 81 518 (27)
. 55 1043 9313
ho=1,1h)=—, 13 =—, 133 = ———,
2,0 2,2 27 3,1 9 33 405

Ty = 1.

Introducing the transformation p = L T, we have

20 1)]*

it 1 3 3 3\2

Ly =25 ht =)= (h+e )2 (h+ =

/® 2/0\/(+10> <+10>"<+10)
i+

L) B
it 3?2 37
X p h+1—0 dp = Bij h+ﬁ s (28)

i1

where B;; =272 fol 1 — p2 p™ dp. In particular,

2 2
Boo = %) Boz = Bia = Pop = %,

V2w

:30,4 = ,31,3 = ,32,2 = ,33,1 = ,34,0 = T;

542
Bos = Brs = Bos = Pur = f;”.

Substituting (26)-(28) into (25) gives
M(h,8) = M*(h,d)

3 3
= Za,.f ilydi=4v2) @ | > rily
i=0 Th i=0

jz0

itj
4

3
VAT (h + %)
i=0

jz0

—(ns2 > d h+3l
- 10 Ml 10)°

where d; = 44/2 Zi+j=l @; 155 Bij» | € N. Direct collecting r;; for dj
completes the proof. O

To investigate the large-amplitude periodic traveling waves of
Eq. (8), we focus on studying the zeros of the function .# (h, )
within a narrow interval (—e;,0), where €, is positive and suffi-
ciently small. These zeros correspond to the periodic traveling waves
of Eq. (8) through a homoclinic bifurcation. An efficient tool for this
analysis is the asymptotic expansion of .# (h, §) near h = 0 within a
narrow interval (—¢;, 0). Recall that for a general near-Hamiltonian
system (9), near a homoclinic loop connecting a hyperbolic sad-
dle, the Melnikov function M(h,8) can be expanded as M(h, )
=2 506 (W + h1n|h|) near a homoclinic loop connecting a hyper-
bolic saddle.”’** Specifically, the first four coefficients can be derived

pubs.aip.org/aip/cha

using formulas presented in Theorem 2.2 of Ref. 35. Applying these
formulas to our context, we obtain the following lemma:
Lemma9. For0 < —-h<1,

M (h,8) = ey + ethIn(—h) + e;h + O(K* In(h)),

where
ep = a*ay + b'a; + cFay, e = —a,
10 (29)
e = d*Oll + —oy,
3
2 2
. 32051(3)r(3) 0 152051(2)r(32)
with a* = — s b =3, = I /m ’

- 271%20%«/5
or(3)r(3)”

Using the asymptotic expansions of .# (h,8) in two narrow
intervals, we proceed to prove the second and third claims of
Theorem 2.

Proof of (ii) and (iii) of Theorem 2. We aim to show that there
exist certain values of («p,;, ;) near specific points such that

A (h,8) has two zeros inside (—e¢;,0) or (—%,61 — %) We focus

on proving the claim regarding values near (0,—%,0{;) with
a; # 0 such that .Z (h,8) has two zeros inside (—e¢;,0), emerg-
ing periodic traveling waves through a homoclinic bifurcation. The
other case can be treated similarly.

First, consider the system of equations ey = e; = 0. For «,

Q

# 0, this system has a unique solution (o], o}, @3) = (0, - %, az).

. . _ . _ 10
Without loss of generality, we set o, =1, leading to e, = 3

— €& <0 at (af,af, 1) = (O, -, 1). Additionally, the determi-

b*

d(eg.e1)
9(ag»0r1)
e and e; can be treated as independent parameters.

We then choose the values of e; and ¢, in turns such that
0<e K —e K I% — 62‘1* |. This choice ensures that .# (h, §) has
two zeros near h =0 within a very narrow interval (—e¢;,0).
Noting that e, and |e;| are taken to be sufficiently small,
and then underground parameter (cp,c;,1) must lie in a sub-

set %* of a sufficiently small neighborhood % of («§,af,1),
where % * = {(ao,al,l) <K —K i—f* - e*}. This com-
pletes the proof. |

nant of the Jacobian matrix det ‘ = Y 0, indicating that

C. Bursting periodic traveling waves by a Poincaré
bifurcation

To uncover the count of periodic traveling waves in Eq. (8)
arising from a Poincaré bifurcation, the core problem is the pre-
cise bound on the maximal number of zeros of .# (h,8) within
he (— 3 0). We introduce u = 7 + 1 to system (20) and arrive at
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The corresponding Hamiltonian and Abelian integrals are given by

H(u,v)=—i+v—2+3—ﬁz+a4+2a3+ﬁ—sﬁ V—2+d>(1'4)
10 2 2 5 2
and
M(h,8) = @lo(h) + a1, (h) + @75 (h), (31)

respectively. Here, .%,(h) = I3(h) + 3L,(h), where I;(h) = §. #'vdi
for i=0,1,2,3, and_&o =g+ o) + 0, @ =a) + 3ay, @ = .
Notably, . (h,8) = M(h, ).

Lemma 10. For i€ N, 2hl;(h) =f f,-(iz)v"’ du for ieN,
Ty

o
_ f"fu) —, with
15 (i+1)2 (#8243 1+3)

where f;(1) =
fi@ = (2 + 18 + 174 + 72ia* + 136 #° + 161 it
+476 0 +210iw* + 924 7% + 150 i + 1050 &* + 45
+ 660 i1 + 180) .

Proof. Using the identity 2® (1) + v* = 2h on each I'j,, we have

2hIi(h) = f Qo (@) + v)w'vda
T

= 7{ 20 () u'vdu + 7§ ' dia. (32)
Ty

Tp

pubs.aip.org/aip/cha

By taking k = 1, F(&#) = 2#'®(#), and applying Lemma 4.1 from
Ref. 33, we obtain

‘(f 20 (W)i'vdu =¢ G;(w)v* din. (33)
Tp Tp
Substituting (33) into (32) completes the proof. O

Next, we introduce the functions

LGin2) = (%) @) — (g) @), i=0,1

3 3
L(i2) = (J%) (@) — (%) (2(i)

and

1 2
for (i4,2) € (—1,0) x <o, 2 _10F g) = A satisfying @ (@)

— ®(2) = 5;7q(, z) = 0, where

q,2) =20 + 2Pz + 202 +2x2 + 22
+10x° + 10wz + 10x2° + 102° + 20 &> + 20 xz
+2022 +15x+ 15z (34)

We compute W[I,], W[}, L], and W[I}, 1, ], the Wronskians of I,
I}, and L, respectively, as follows:

(1 — 2w (i, 2)

Wik]

Wi, L] =

TG ) G+ ) @ A30+3) (P +3243)

(I — 2)°wy (i1, 2)

Wi, b, L] =

225 (z4+ 1) @+ 1) (2 +32+3)° (@2 + 35+ 3)° po(ih2)

(7 — 2)°ws (i, 2)

where po(it,2) = 24° + 41’z + 6uz> + 82> + 10> + 20 iz + 30 22
+ 20 +40z + 15, w, (i, 2), w2(ii, 2), and w3 (i, z) are three symmet-
ric bivariate polynomials with long expressions, they have degrees
14, 23, and 36, respectively [Explicit expressions for wy (i, z),
k =1,2,3 are provided as a supplementary material]. We compute
the resultant between q(u, z) and py(u4, z) with respect to z, obtain-
ing a polynomial, which has no zeros for u# € (—1,0) (by applying
Sturm’s theorem). This implies that py(i,z) has no roots on A.
Therefore, the Wronskians are all well-defined.

Proof of (iv) of Theorem 2. We need to show that ./ (h, §) has
at most two zeros located in (— %, 0) for all (arg, o1, @02) € R3. By uti-

lizing Eq. (31) and the identity .# (h,8) = M(h,§) in conjunction

3375323 (z+ 1)° (a4 1)° (2 + 30+ 3) (22 +32+3) pi(it,2)

with Lemma 10, it suffices to demonstrate that any linear combina-
tion of the integrals

{ fo(@)v® du, f fi(w)v du, f (@) + 3f )V’ du
r, r, r,

has at most two zeros. To achieve this, we must investigate whether
this set forms a Chebyshev system or not. Consequently, we employ
Lemma 6 to verify whether the associated Wronskians vanish.

First, we compute the resultant between w; (i4,2) and q(i, z)
with respect to z, yielding a polynomial that has no zeros for
u e (—1,0) (as proven by Sturm’s theorem). This implies that
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wi (14, z) does not vanish on the domain A. Next, by triangulariz-
ing the algebraic set [w, (i1, 2), q({L,2)] and isolating the roots using
the algorithm of the symbolic computation described in Ref. 36, we
show that [w, (i, 2), q(i, z)] has no roots for (jx,z) € A. Therefore,
Wl (), l,(4)] does not vanish for u € (—1,0). Similarly, we can
prove that W[, (1), L (&), Iy (i) ] also does not vanish for & € (—1,0).
Hence, the set of integrals forms a Chebyshev system, implying that
A (h,8) has at most two zeros for h € (—+5,0). This completes the
proof. O

IV. BIFURCATION DIAGRAM

In this section, we derive the bifurcation diagram for the emer-
gence of periodic traveling waves in the quartic KdV equation (8).
Without loss of generality, we assume o =1 in (23). Then,
A (h,8) = oo (h) + )i () + J5(h), where Ji(h) = §; u'dv rep-
resents the generating Abelian integral along T'j. First, we have
Ty =y, Ldu=§. +de = ST dr = T(h) > 0, where T(h) is
the period of I'y. As h — —-, indicating v — 0, we have Jo (— )
= limh_)_i 551";1 vdu = limh_)_% fo 2 dg = 0. Thus, Jy(h) > 0 for

he (-3, ) Consequently, the ratio of the generating Abelian
integrals, defined as
aJi(h) + J5(h)
2 =——" (35)
Jo(h)
is well defined for h € (—%, 0). This allows us to express .# (h, §)
as A (h,8) = Jo(h) (oo + Z (h)). Next, we establish the following
lemma regarding the behavior of 2 (h).
Lemma11. The function & (h) satisfies the following limits:

* 1
lim Z(h) =a;+1, hm Z (h) = b—al + 7—
hs—3 90

1 1
lim Z27h) = —=a; — =,
h*)*w 3 2

hm Z'(h) = Sign (—b—al - C—i) 00
ax a
Proof. A straightforward computation shows that
(rJy () + J5(h)Jo(h) — ()i (h) +Is(h))]0(h)
Jo(h)

Using the asymptotic expansions of .# (h, §) from Lemmas 8 and 9,
we can derlve the asymptotic expansions of J;(h) and Ji(h) at h = 0

Z'(h) =

and h = — < for i = 0,1, 3. This allows us to compute the limits of
Z (h) and 3&” (h) at the two endpoints h = —= and h = 0. Direct
computations complete the proof. O

Furthermore, we analyze the monotonicity of 2 (h) in the
following lemma:

Lemma 12. For h € (—3,0), the function % (h) exhibits the
following behaviors:

1. When o, € (—oo,—%], Z'(h) increases monotonically from

(==, a1 + 1) to the right endpoint (O, Z—:al + ;—i)

pubs.aip.org/aip/cha

*

2. When a; e( 2,—;—*), Z (h) decreases monotonically from

(=2,a1+1) to a minimum point (h*, 2 (h*)) and then
increases monotonically to the right endpoint (0,40{1 + ;—i)

In particular, Z (—13—0) < Z(0) when «a; € ( ,—%),
X (—3)=20) when oy=—57=, and 2 (-3)

27a* c*
> 2°(0) when a; € (_Wa—a*)’_h_*)'
3. When «; € [—;—:,—i—oo), Z (h) decreases monotonically from
(=, 1 + 1) to the right endpoint (0, Zu’—::al + Z—i)

Proof. From 2 of Lemma 11, we know that 27 (—3) > 0,
27(0) > 0 when o, € (—oo,—%]. This implies that 2"(h) may
have 2n zeros, where n > 0. If 27 (h) possesses two or more
zeros, then there necessarily exists a suitable o for which . (h, §)
has at least three zeros, taking into account the inequality 2 (0)
> 2 (—+)- This finding contradicts the conclusion drawn in the

proof of part (iv) of Theorem 2, which states that .# (h, §) can have

at most two zeros within the interval (—,0). Consequently, it fol-
lows that 27 (h) is pos1t1ve, implying that .2"(h) is an increasing
monotonically in (— 9 0)

Noting that 27 (—5) 27(0) <0 for a; € (-3,

deduce that 27/ (h) has 2 n + 1 zeros (n > 0). However, if 2 (h) has
three or more zeros, there must exist special values of & such that
A (h,8) has at least three zeros. This conflicts with the established
conclusion that .# (h, §) has at most two zeros within the interval
(—2,0). Therefore, 27 (h) has a unique zero, denoted by h*. This
implies that 2" (h) decreases monotonically from (—%,al + 1) to
a minimum point (h*, Z (h*)) and then increases monotonically

X
—;—*), we

toward the right endpoint (0 oy + 5 ) The inequalities regard-

ing the values of 2 (h) at these endpomts can be directly derived by
comparing their respective values. The third claim of Lemma 12 can
be proved similarly. ]

Based on Lemma 12, which characterizes the behavior of
Z (h), we strategically select ag = — %2 (h*) to ensure that
+ 2 (h) vanishes at h = h*, thereby guaranteeing that ./ (h, §) hasa
zero at h = h*. Leveraging this insight, we delineate the lines, curves,
and regions that compose the bifurcation diagram for periodic trav-
eling waves of the quartic KdV equation (8). The detailed analysis is
as follows:

1. For any «; € R, setting oy = —2(0) results in .#(0,8)
= 0, indicating the persistence of a solitary wave. The homo-
clinic bifurcation set is then characterized by a*a + $a; + 7;‘5*
o) = 0.

2. For any o € R, setting og = — & (——) leads to //l( 50 )
= 0, corresponding to the Hopf bifurcation plane, characterized
byag + o + o, =0.

3. Fora; € (—00,—3),choosinga € (—27(0), =2 (—+)) yields
a unique zero of .# (h,§), signifying the existence of a unique
periodic traveling wave of (8). Conversely, selecting o outside
this interval results in the absence of periodic traveling waves.
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4. Foru; € (—%, —;—:), setting g = — min 2 (h) for h € (—%,0)
defines the double limit cycle bifurcation curve. Specifically,
oy =—2 (—) with 27 (—<) = 0 gives the degenerate Hopf
bifurcation point (%, —%), while ag = —.27(0) and oy = 0 corre-
spond to the degenerate homoclinic bifurcation point (0, — Z—z)

5. For « € (—%,—Z—i), if —ay lies between min 2 (h) and

min {5{ (—1—30) , %(0)}, A (h,8) has two simple zeros in
(=+,0), indicating the emergence of two periodic traveling
waves. Alternatively, if —a, falls within (min {% (—1%) A (O)},
max {2 (—3), 27(0)}), 4 (h,8) has a unique simple zero,
ensuring the existence of a single periodic traveling wave. Choos-
ing oy outside these intervals results in the absence of periodic
traveling waves.

27a*
6. For «; € (_W’

A (0,8) = 0and .# (h,5) has another zero in (—5,0), implying
the coexistence of a solitary wave and a periodic wave.

7. For «; € (—Z—:, +oo), selecting oy € (—% (—1—30) R —5{(0))
yields a unique zero of .# (h, §), corresponding to a unique peri-
odic traveling wave of Eq. (8). Conversely, choosing o, outside
this interval results in the absence of periodic traveling waves.

—Z—i), setting o9 = —2°(0) ensures

Summarizing these findings, we can derive the bifurcation diagram
provided in Fig. 1 and validate the last claim of Theorem 2.

SUPPLEMENTARY MATERIAL

See the supplementary material that provides explicit expres-
sions of three symmetric bivariate polynomials w; (i, z), w, (i, 2),
and ws (i, z) with degrees 14, 23, and 36, respectively. These poly-
nomials appear in the proof of Lemma 10.
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