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Abstract
A quasi-one-dimensional Poisson–Nernst–Planck system for ionic flow through a
membrane channel is studied. Nonzero but small permanent charge, the major struc-
tural quantity of an ion channel, is included in the model. The system includes three
ion species, two cations with the same valences and one anion, which provides more
correlations/interactions between ions compared to the case included only two oppo-
sitely charged particles. The cross-section area of the channel is included in the system,
which provides certain information of the geometry of the three-dimensional channel.
This is crucial for our analysis. Under the framework of geometric singular perturba-
tion theory, more importantly, the specific structure of the model, the existence and
local uniqueness of solutions to the system for small permanent charges is estab-
lished. Furthermore, treating the permanent charge as a small parameter, through
regular perturbation analysis, we are able to derive approximations of the individual
fluxes explicitly, and this allows us to examine the small permanent charge effects on
ionic flows in detail. Of particular interest is the competition between two cations,
which is related to the selectivity phenomena of ion channels. Critical potentials are
identified and their roles in characterizing ionic flow properties are studied. Some crit-
ical potentials can be estimated experimentally, and this provides an efficient way to
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adjust/control boundary conditions (electric potential and concentrations) to observe
distinct qualitative properties of ionic flows. Mathematical analysis further indicates
that to optimize the effect of permanent charges, a short and narrow filter, within
which the permanent charge is confined, is expected, which is consistent with the
typical structure of an ion channel.

Keywords GSPT for PNP · Permanent charges · Channel geometry · Individual
fluxes · Electroneutrality conditions

Mathematics Subject Classification 34A26 · 34B16 · 34D15 · 37D10 · 92C35

1 Introduction

Ion channels are large proteins embedded in cell membranes which create openings
in the membrane to allow cells to communicate with each other and with the outside
to transform signals and to conduct tasks together (Boda et al. 2007; Eisenberg 2011).
Ion channels permit the selective passage of charged particles formed from dissolved
salts, such as sodium, potassium, calcium and chloride particles which carry electrical
current in and out of the cell. The study of ion channels consists of two related major
topics: structures of ion channels and ionic flow properties.

The physical structure of ion channels is defined by the channel shape and the
spacial distribution of permanent and polarization charge. The shape of a typical ion
channel is often approximated as a cylindrical-like domain with a non-uniform cross-
section area.Within a large class of ion channels, amino acid side chains are distributed
mainly over a “short” and “narrow” portion of the channel, with acidic side chains
contributing permanent negative charges and basic side chains contributing permanent
positive charges, which is analogous to the doping of semiconductor devices, e.g.,
bipolar PNP and NPN transistors.

With a given structure of an open channel, the main interest is to understand its
electrodiffusion property. Mathematical analysis plays important and unique roles for
generalizing and understanding the principles that allow control of electrodiffusion,
explaining mechanics of observed biological phenomena and for discovering new
ones, assuming a more or less explicit solution of the associated mathematical model
can be obtained. However, in general, the latter is too much to expect. Recently, there
have been some successes in mathematical analysis of Poisson–Nernst–Planck (PNP)
models for ionic flows throughmembrane channels (Bates et al. 2020, 2017; Eisenberg
and Liu 2007; Eisenberg et al. 2015; Ji et al. 2019, 2015; Lin et al. 2013; Liu 2005,
2009; Liu and Xu 2015; Park and Jerome 1997; Wen et al. 2021).

One of the fundamental concerns of physiology is the function of ion channels. The
most basic function of ion channels is to regulate the permeability of membranes for a
given species of ions and to select the types of ions and to facilitate and modulate the
diffusion of ions across cell membrane. Currently, these permeation and selectivity
properties of ion channels, actually themost two relevant properties of ion channels, are
usually determined from the current–voltage (I–V) relations measured under differing
experimental conditions (Eisenberg 2011; Gillespie 2008). The I–V relations define
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the function of the channel structure, that is, the ionic transport through ion channel,
which is governed by fundamental physical laws of electrodiffusion that relate rates
of quantities of interest. However, in terms of applications, it is important to study
properties of individual fluxes because most experiments (with some exceptions) can
only measure the total current while individual fluxes contain much more information
on channel functions (Hodgkin and Keynes 1955; Ji et al. 2019). The macroscopic
properties of ionic flows through ion channels rely further on external driving forces
expressed mathematically as boundary conditions (Bates et al. 2017).

In this work, focusing on basic understandings of possible effects of small perma-
nent charges and channel geometry, as a starting point, we will study the qualitative
properties of ionic flows through membrane channels via a classical PNP model with
multiple cations, a piecewise constant permanent charge (small) and a cylindrical-like
channel with variable cross-sectional area. Of particular interest is permanent charge
and channel geometry effects on the individual fluxes, which can be mathematically
extracted from solutions of the PNP system; and the competition between cations due
to complicated nonlinear interplays among system parameters, which is related to the
selectivity phenomena of ion channels.

1.1 Poisson–Nernst–PlanckModels for Ionic Flows

Considering the structural characteristics, the basic continuummodel for ionic flows is
the Poisson–Nernst–Planck system, which treats the aqueous medium as a dielectric
continuum (Eisenberg 2003a, b, 1990, 1996; Gillespie and Eisenberg 2002; Gille-
spie et al. 2003; Im and Roux 2002; Roux et al. 2004 etc.). The PNP system can be
derived as a reducedmodel frommolecular dynamics (Schuss et al. 2001), fromBoltz-
mann equations (Barcilon 1992), and from variational principles (Hyon et al. 2010,
2012, ?). More sophisticated models (Biesheuvel 2011; Chen et al. 1995; Eisenberg
et al. 2010; Fair and Osterle 1971; Gross and Osterle 1968; Sasidhar and Ruckenstein
1981; Wei 2010; Wei et al. 2012) have also been developed which can model the
physical problem more accurately, however, it is very challenging to examine their
dynamics analytically and even computationally. Considering the key feature of the
biological system, the PNP system represents an appropriate model for both analysis
and numerical simulations of ionic flows.

The simplest PNP system is the classical Poisson–Nernst–Planck (cPNP) system
that includes the ideal component μid

k (X) in (1.4) only. The ideal component μid
k

contains contributions by considering ion particles as point charges and ignoring the
ion-to-ion interaction. It has been shown by some numerical studies that classical PNP
models provide good qualitative agreement with experimental data for I–V relations
(Barcilon 1992; Barcilon et al. 1992). The classical PNP models have been simulated
and analyzed extensively (see, e.g., Abaid et al. 2008; Barcilon 1992; Barcilon et al.
1992, 1997; Eisenberg et al. 2015; Lee et al. 2011; Liu and Wang 2010; Liu and Xu
2015; Park and Jerome 1997; Singer and Norbury 2009; Singer et al. 2008;Wang et al.
2014; Zhang 2015, 2018).
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For ionic solutions with n ion species, the PNP system reads

∇ ·
(
εr (r)ε0∇�

)
= −e

( n∑
s=1

zsCs + Q(r)
)
,

∇ · Jk = 0, −Jk = 1

kBT
Dk(r)Ck∇μk, k = 1, 2, . . . , n,

(1.1)

where r ∈ � with � being a three-dimensional cylindrical-like domain representing
the channel,Q(r) is the permanent charge density, εr (r) is the relative dielectric coef-
ficient, ε0 is the vacuum permittivity, e is the elementary charge, kB is the Boltzmann
constant, T is the absolute temperature;� is the electric potential. Also, for the kth ion
species, Ck is the concentration, zk is the valence, μk is the electrochemical potential
depending on� and {C j },Jk is the flux density, andDk(r) is the diffusion coefficient.

Based on the fact that ion channels have narrow cross-sections relative to their
lengths, reduction of the three-dimensional steady-state PNP systems (1.1) to a quasi-
one-dimensional models was first proposed in Nonner and Eisenberg (1998) and was
rigorously justified in Liu andWang (2010) for special cases. A quasi-one-dimensional
steady-state PNP model takes the form

1

A(X)

d

dX

(
εr (X)ε0A(X)

d�

dX

)
= −e

( n∑
s=1

zsCs + Q(X)
)
,

dJk

dX
= 0, −Jk = 1

kBT
Dk(X)A(X)Ck

dμk

dX
, k = 1, 2, . . . , n,

(1.2)

where X ∈ [0, l] is the coordinate along the axis of the channel, A(X) is the area of
cross-section of the channel over the location X .

Equipped with system (1.2), we impose the following boundary conditions (see,
Eisenberg and Liu 2007 for a reasoning), for k = 1, 2, . . . , n,

�(0) = V, Ck(0) = Lk > 0; �(l) = 0, Ck(l) = Rk > 0. (1.3)

1.1.1 Electrochemical Potential

The electrochemical potential μk(X) for the i th ion species consists of the ideal com-
ponentμid

k (X) and the excess componentμex
k (X):μk(X) = μid

k (X)+μex
k (X), where

μid
k (X) = zke�(X) + kBT ln

Ck(X)

C0
(1.4)

with some characteristic number density C0 defined by

C0 = max
1≤i≤n

{
Li ,Ri , sup

X∈[0,l]
|Q(X)|

}
.
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The cPNP system takes into consideration of the ideal component μid
k (x) only. This

component reflects the collision between ion particles and the water molecules. It has
been accepted that the cPNP system is a reasonable model in, for example, the dilute
case under which the ion particles can be treated as point particles and the ion-to-
ion interaction can be more or less ignored. The excess chemical potential μex

k (x)
accounts for the finite size effect of ions. We would like to point out that, among many
limitations, such as the “gating” phenomena, may not be captured by the simple cPNP
model. However, the basic findings on dynamics of ionic flows and their dependence
on the system parameters, in particular, the permanent charges, the channel geometry,
the ratios of boundary concentrations of cations, and the ratios of diffusion constants
provides important insights into themechanism of ion channels and better understand-
ings of ionic flow properties. More importantly, some are non-intuitive, and deserve
further studies. More structural detail and more correlations between ions should be
taken into considerations in PNP models such as those including various potentials
for ion-to-ion interaction accounting for ion size effects (Aitbayev et al. 2019; Bates
et al. 2020; Gillespie et al. 2002; Hyon et al. 2010; Ji and Liu 2012; Jia et al. 2016;
Kilic et al. 2007; Liu and Eisenberg 2014; Liu et al. 2012; Lu et al. 2018; Lin et al.
2013; Sun and Liu 2018).

1.1.2 Permanent Charge

The spatial distribution of side chains in a specific channel defines the permanent
charge of the channel. While some information may be obtained by ignoring the per-
manent charge and focusing on the effects of boundary conditions, the valences and
sizes of ions, etc., we believe that different channel types differ mainly in the dis-
tribution of permanent charge (Gillespie 1999). To better understand the importance
of the relation of ionic flows and permanent charges, we remark that the role of per-
manent charges in membrane channels is similar to the role of doping profiles in
semiconductor devices. Semiconductor devices are similar to membrane channels in
the way that they both use atomic-scale structures to control macroscopic flows from
one reservoir to another. Ions move a lot like quasi-particles move in semiconductors.
Roughly, holes and electrons are the cations and anions of semiconductors. Semicon-
ductor technology depends on the control of migration and diffusion of quasi-particles
of charge in transistors and integrated circuits. Doping is the process of adding impu-
rities into intrinsic semiconductors to modulate its electrical, optical, and structural
properties (Rouston 1990; Jr Warner 2001). One may roughly understand in the fol-
lowing sense, doping provides the charges that acid and basic side chains provide in
a protein channel. For both ion channels and semiconductors, permanent charges add
an additional component−probably the most important one−to their rich behavior.
In general, the permanent charge Q(X) is modeled by a piecewise constant function,
that is, we assume, for a partition X0 = 0 < X1 < · · · < Xm−1 < Xm = l of [0, l]
into m subintervals, Q(X) = Q j for x ∈ (X j−1, X j ) where Q j ’s are constants with
Q1 = Qm = 0 (the intervals [X0, X1] and [Xm−1, Xm] are viewed as the reservoirs
where there is no permanent charge).
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1.2 Problem Setup

For definiteness, in our later discussion, we assume

(A1). The ionic mixture consists of three ion species (n = 3) with z1 = z2 := z > 0
and z3 < 0.

(A2). The permanent charge is defined by

Q(X) =
⎧⎨
⎩

Q1, X0 < X < X1,

Q2, X1 < X < X2,

Q3, X2 < X < X3,

(1.5)

where X0 = 0, X3 = l, Q1 = Q3 = 0 and Q2 is some nonzero constant.
(A3). For the electrochemical potential μi , we only include the ideal component μid

i
given by (1.4).

(A4). The relative dielectric coefficient and the diffusion coefficient are constants,
that is, εr (X) = εr and Di (X) = Di .

In the sequel, we will assume (A1)–(A4). We first make a dimensionless rescaling
following (Gillespie 1999). Let

ε2 =εrε0kBT

e2l2C0
, x = X

l
, h(x) = A(X)

l2
, Di = lC0Di ;

φ(x) = e

kBT
�(X), ci (x) = Ci (X)

C0
, Ji = Ji

Di
;

V = e

kBT
V, Li = Li

C0
; Ri = Ri

C0
.

(1.6)

The BVP (1.2)–(1.3) then becomes

ε2

h(x)

d

dx

(
h(x)

d

dx
φ

)
= −(

z1c1 + z2c2 + z3c3 + Q(x)
)
,

dck
dx

+ zkck
dφ

dx
= − Jk

h(x)
,

dJk
dx

= 0, k = 1, 2, 3

(1.7)

with the boundary conditions, for i = 1, 2, 3,

φ(0) = V , ci (0) = Li > 0; φ(1) = 0, ci (1) = Ri > 0. (1.8)

Remark 1.1 The dimensionless parameter ε defined in (1.6) as ε = 1
l

√
εr ε0kBT
e2C0

is

directly related to the ratio κD/l, where κD =
√

εr ε0kBT∑
j (z j e)

2C j
is the Debye length;

in particular, ε = κD/l when z2j = 1 and C j = C0. Typically, the parameter ε is
small due to the fact that the two variables l, the length of the channel, and C0, some
characteristic number density could be very large. For many cases, the value of ε is of
order O(10−3) (see Eisenberg and Liu 2017 for a more detailed description).
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1.3 Comparison with Some PreviousWorks

Recently, the classical PNPmodel has been analyzedunder the frameworkof geometric
singular perturbation theory (see Bates et al. 2017; Eisenberg and Liu 2007; Ji et al.
2015; Liu 2005, 2009 for example). For readers’ convenience, we would like to briefly
discuss the similarities and differences compared to current work.

Our work follows a similar dynamical system framework to establish the existence
and uniqueness result of the problem. However, compared to these works, our set-ups
are much more challenging and more realistic, more importantly, the specific structure
of our model allows us to obtain detailed description of the nonlinear interplay among
different system parameters. This is far beyond the existence and uniqueness result. To
be specific, our model includes three ion species, two positively charged with the same
valences, and one negatively charged (in Eisenberg and Liu 2007; Ji et al. 2015; Liu
2005, only two oppositely charged particles are included, selectivity of cations, one
of the most relevant biological properties of ion channels cannot be described); and a
profile of nonzero but small permanent charges (in Bates et al. 2017, it includes three
ion species butwith zero permanent charges, the effects on ionic flows from the two key
structures of ion channels: channel geometry and distribution of permanent charges,
cannot be examined, while this could provide crucial insights for the selectivity of
cations through membrane channels). In Liu (2009), the author extended the work in
Eisenberg and Liu (2007) and established the existence and local uniqueness of the
classical PNP system with n ion species.

Our work, in some sense, is motivated by Ji et al. (2015), and there are some
similarities in the treatment. More precisely, both of the works employ regular per-
turbation analysis to derive the explicit expressions of the individual fluxes up to the
first order in the small permanent charge, which is reflected in Sect. 2.4 in current
work. However, the derivation is much more challenging due to the nonlinearity of the
individual fluxes in the potential V (in Ji et al. 2015, the individual fluxes are linear
in the potential V ). The nonlinearity of the individual fluxes in the potential provides
much more rich dynamics of ionic flows, and more complicated nonlinear interaction
among the system parameters, which is addressed in both Sects. 3 and 4. Meanwhile,
this indicates that our work provides a better understanding of the mechanism of ionic
flows through single ion channels, which is necessary and important for future studies
of ion channel problems.

To provide a systematic study of the PNP system, for this more realistic set-up, in
Sect. 3, we further verified that (similar treatment as that in Ji et al. (2015) but more
challenging due to the nonlinearity)

(I) A small positive permanent charge, depending on other system parameters,
cannot enhance the flux of any cation while reduce the flux of the anion. This is
consistent with the observation in Ji et al. (2015), and provides complimentary
information andbetter understandingof the phenomenabecause of the existence
of multiple cations (see Remark 3.16 for more details).

(II) To optimize the effect of permanent charges, a short and narrow filter, within
which the permanent charge is confined, is expected, which is consistent with
the typical structure of an ion channel. This is consistent with the observation
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obtained in Ji et al. (2015), but much more rich and complicated dynamics are
observed (see Remark 3.21 for detailed discussion).

To summarize, most of the results mentioned abovemainly focused on the existence
and local uniqueness results, and could not provide information for the qualitative
properties of ionic flows, especially the selectivity phenomena of ion channels, while
the latter is more important for one to understand the internal dynamics of ionic flows,
which cannot be detected using current technology. However, in our work for the
specific set-up, the qualitative properties of ionic flows, particularly the competition
between cations, in terms of the individual fluxes are able to be analyzed in great
detail, and the nonlinear interplay among system parameters is characterized almost
completely. The mathematical analysis in this work provides deep insights and better
understanding of the mechanism of ionic flows through membrane channels, and
certain information for the selectivity phenomena of ion channels. This is our main
contribution and the novelty.

1.4 Main Results

For convenience, we briefly summarize our main results as followswith j, k = 1, 2, 3.

(i) Characterization of boundary/internal layers �[ j−1,r ] and �[ j,l], and landing
points ω(N [ j−1,r ]) and α(N [ j,l]) via the limiting fast system (2.3); see Propo-
sition 2.3 in Sect. 2.1.1.

(ii) Characterization of regular layers 
 j via the limiting slow system (2.10), and
the transversal intersection of M̄ [ j−1,r ], the forward image of ω(N [ j−1,r ]),
and M̄ [ j,l], the backward image of α(N [ j,l]), on the slow manifold Z j ; see
Lemma 2.4 and Proposition 2.5 in Sect. 2.1.2.

(iii) Establishing the existence and local uniqueness result of the underlying PNP
system; see Theorem 2.7 in Sect. 2.3.

(iv) Obtaining the zeroth-order and first-order (in Q0) solutions of system (2.18)–
(2.19), crucial to derive explicit expressions of the individual fluxes up to the
first order in Q0; see Propositions 2.8 and 2.11 in Sect. 2.4.

(v) The sign of M and 1 − N , critical for our analysis in Sects. 3 and 4; see
Lemmas 3.4 and 3.5 in Sect. 3.1.

(vi) Analysis of the small permanent charge effect on the individual fluxes Jk, from
three directions

(vi-1) The sign of Jk1, the first-order expansions in Q0; see Theorems 3.10
and 3.13 in Sect. 3.2.1.

(vi-2) Effects on the magnitude of Jk ; see Theorem 3.15 in Sect. 3.2.2.
(vi-3) Monotonicity of Jk1; see Theorem 3.18 in Sect. 3.2.3.

(vii) Channel geometry effect on themagnitude of Jk1; seeTheorem3.20 in Sect. 3.3.
(viii) Study on competition between cations in terms ofJ 1

1,2 = D1 J11−D2 J21 based

on distinct interplays among D1
D2

, L2
L1

and R2
R1

consisting of three cases

(viii-1) Case study with D1
D2

= R2
R1
; see Theorem 4.2 in Sect. 4.1.

(viii-2) Case study with D1
D2

> max{ L2
L1

, R2
R1

}; see Theorem 4.4 in Sect. 4.2.
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(viii-3) Case study with L2
L1

< D1
D2

< R2
R1
; see Theorem 4.6 in Sect. 4.3.

(ix) Analysis on the magnitude of J1,2, equivalent to examine the sign of J 0
1,2J 1

1,2,

where J 0
1,2 = D1 J10 − D2 J20; see Theorem 4.8 in Sect. 4.4.

Remark 1.2 In (viii), there are actually another three cases: 1) D1
D2

= L2
L1
; 2) D1

D2
<

min{ L2
L1

, R2
R1

}; and 3) R2
R1

< D1
D2

< L2
L1
. The results and arguments are very similar to

those corresponding to the case stated in (viii-1)–(viii-3), and are not included in this
work. Interested readers can study them following our discussions detailed in Sect. 4.

To end this section, we rewrite the PNP system (1.7) into a standard form of sin-
gularly perturbed systems and convert the boundary value problem to a connection
problem. Upon introducing u = εφ̇ and τ = x , system (1.7) becomes

εφ̇ = u, εu̇ = −z1c1 − z2c2 − z3c3 − Q(τ ) − ε
h′(τ )

h(τ )
u,

εċ1 = −z1uc1 − ε
J1

h(τ )
, εċ2 = −z2uc2 − ε

J2
h(τ )

εċ3 = −z3uc3 − ε
J3

h(τ )
,

J̇1 = J̇2 = J̇3 = 0, τ̇ = 1,
(1.9)

where dot denotes the derivative with respect to x .
System (1.9) will be treated as a dynamical system with the phase space R

9 and
the independent variable x is viewed as time. The boundary condition (1.8) becomes

φ(0) = V , ck(0) = Lk, τ (0) = 0; φ(1) = 0, ck(1) = Rk, τ (1) = 1.

Let BL and BR be the subsets of the phase space R9 defined by

BL = {(φ, u, c1, c2, c3, J1, J2, J3, x) : φ = V , c1 = L1, c2 = L2, c3 = L3, x = 0},
BR = {(φ, u, c1, c2, c3, J1, J2, J3, x) : φ = 0, c1 = R1, c2 = R2, c3 = R3, x = 1}.

(1.10)

Now, the boundary value problem is equivalent to the following connection problem:
finding an orbit of (1.9) from BL to BR .

The rest of the paper is organized as follows. In Sect. 2, we establish the existence
and local uniqueness of solutions to the boundary value problem under the framework
of geometric singular perturbation theory, and expand the singular orbit, solutions of
the limiting PNP system, in Q0 near Q0 = 0 to obtain Jk1, the leading terms that
contain small permanent charge effects. In Sect. 3, we focus on the permanent charge
and channel geometry effects on the individual fluxes. Of particular interest is the
terms Jk1, which are analyzed from different directions, such as the sign of Jk1, the
monotonicity of Jk1 and the channel geometry effects on the magnitude of Jk1 in
details. In Sect. 4, we study the competition between the two cations, which further
depend on the nonlinear interplays among other system parameters, in addition to
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small permanent charge and channel geometry, in particular, the interaction between
the ratios of diffusion constants and the ratios of boundary concentrations of two
cations. Section 5 provides some concluding remarks. Some proofs are provided in
Sect. 6.

2 Geometric Singular Perturbation Framework

In this section, we apply a modern invariant manifold theory, geometric singular per-
turbation theory, to the system (1.7)–(1.8). Together with the specific structure of this
concrete model, the existence and local uniqueness of solutions to the boundary value
problem is established. Furthermore, the singular orbit of the limiting PNP system
(ε → 0 in (1.7)) depends on the permanent charge Q j in a regular way, which allows
us to further examine the small permanent charge effects on ionic flows via the method
of regular perturbations.

To get started, we letMε
L be the collection of all forward orbits starting from BL and

Mε
R be the collection of all backward orbits starting from BR . Then, for ε > 0 small,

the vector field is not tangent to BL and BR . Notice that dim(BL) = dim(BR) = 4,
which indicates that both Mε

L and Mε
R are smooth invariant manifolds of dimension

5. Generically, we expect that Mε
L and Mε

R intersect transversally. If this is the case,
dim(Mε

L ∩ Mε
R) = dim(Mε

L) + dim(Mε
R) − dim(R9) = 5 + 5 − 9 = 1 and thus,

the intersection would consist of a discrete set of orbits. The connection problem then
will be solved by proving that the manifold Mε

L and Mε
R indeed intersect transversally.

The general idea for this process consists of the following two steps:

(i) Constructing a singular orbit, which is a union of fast and sloworbits of different
limiting systems of (1.9), where fast orbits represent the boundary/internal
layers and slow orbits connect the boundary/internal layers;

(ii) Examining the evolutions of Mε
L and Mε

R along the singular orbit for transver-
sality and apply the exchange lemma.

Following the idea in Liu (2009) for n = 2 cases, we will first construct orbits on
each subinterval [x j−1, x j ] where Q(x) is constant and then match them at jumping
points x = x j ’s of Q(x). To do so, we will preassign the values of φ, ck’s at each x j
for j = 1, 2,

φ(x j ) = φ[ j], ck(x j ) = c[ j]
k (2.1)

with given φ[0] = V and c[0]
k = Lk at x0 = 0, φ[3] = 0 and c[3]

k = Rk at x3 = 1, and
introduce the set, for j = 0, 1, 2, 3,

B j =
{
(φ, u, c1, c2, c3, J1, J2, J3, x) : φ = φ[ j], c1 = c[ j]1 , c2 = c[ j]2 , c3 = c[ j]3 , x = x j

}
.

Notice that B0 = BL and B3 = BR . What follows is to construct singular orbits over
each subinterval [x j−1, x j ] for the connection problem from Bj−1 to Bj . The last
step is to match the singular orbits at each x j to obtain singular orbits over the whole
interval [0, 1].
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2.1 A Singular Orbit on [xj−1, xj]withQ(x) = Qj

We now construct singular orbits over the interval [x j−1, x j ], which consists of two
boundary layers �[ j−1,r ] at x = x j−1, �[ j,l] at x = x j and a regular layer 
 j over the
interval [x j−1, x j ]. We would like to point out that the boundary layer at x j ’s should
be viewed as internal or transition layers relative to the whole interval [0, 1] if x j is
not one of the endpoints.

2.1.1 Fast Dynamics and Boundary Layers

Setting ε = 0 in (1.9), we have the slow manifold

Z j = {
u = 0, z1c1 + z2c2 + z3c3 + Q j = 0

}
,

which is of co-dimension two, i.e., dim(Z j ) = 7. In terms of the independent variable
ξ = x/ε, one obtains the so-called fast system of (1.9)

φ′ =u, u′ = −z1c1 − z2c2 − z3c3 − Q j − ε
h′(τ )

h(τ )
u,

c′
1 = − z1c1u − ε

J1
h(τ )

, c′
2 = −z2c2u − ε

J2
h(τ )

, c′
3 = −z3c3u − ε

J3
h(τ )

,

J ′
1 =J ′

2 = J ′
3 = 0, τ ′ = ε,

(2.2)

where prime denotes the derivative about ξ .
The corresponding limiting fast system is

φ′ =u, u′ = −z1c1 − z2c2 − z3c3 − Q j ,

c′
1 = − z1c1u, c′

2 = −z2c2u, c′
3 = −z3c3u,

J ′
1 =J ′

2 = J ′
3 = 0, τ ′ = 0.

(2.3)

Note that the set of equilibria of (2.3) is exactly Z j . We have the following result (see
also Bates et al. 2017; Lin et al. 2013; Liu 2009).

Lemma 2.1 For the limiting fast system (2.3), the slowmanifoldZ j is normally hyper-
bolic.

Proof The slowmanifoldZ j is precisely the set of equilibria of (2.3). The linearization
of (2.3) at eachpoint of (φ, 0, c1, c2, c3, J1, J2, J3, τ ) ∈ Z j has seven zero eigenvalues
whose generalized eigenspace is the tangent space of the seven-dimensional slow

manifold Z j of equilibria, and the other two eigenvalues are ±
√
z21c1 + z22c2 + z23c3,

whose eigenvectors are not tangent to Z j (Recall that ci ’s are concentrations and we
are only interested in positive ones). Thus, Z j is normally hyperbolic. �	
The theory of normally hyperbolic invariant manifolds (Fenichel 1979) states that
there exists eight-dimensional stable manifold Ws(Z j ) of Z j that consists of points
approachingZ j in forward time; and there exists eight-dimensional unstable manifold
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Wu(Z j ) of Z j that consists of points approaching Z j in backward time. Let M [ j−1,r ]
be the collection of all forward orbits from Bj−1 under the flow of (2.3) and let M [ j,l]
be the collection of all backward orbits from Bj . Let N [ j−1,r ] = M [ j−1,r ] ∩ Ws(Z j )

and N [ j,l] = M [ j,l] ∩ Wu(Z j ). It then follows from dynamical system theory that
�[ j−1,r ] ⊂ N [ j−1,r ] and �[ j,l] ⊂ N [ j,l].

Now, we introduce our first specific structure of the PNP system, which allows us
to further examine the ionic flow properties. It can be verified directly.

Proposition 2.2 System (2.3) has a complete set of eight first integrals given by, for
k = 1, 2, 3,

Hk =cke
zkφ, H4 = 1

2
u2 − c1 − c2 − c3 + Q jφ, H4+k = Jk, H8 = τ.

(2.4)

Under the help of the integrals in Proposition 2.2, we now solve the boundary layer
problems from Bj−1 and Bj to Z j .

Proposition 2.3 One has

(i) Let �[ j−1,r ] ⊂ N [ j−1,r ] be a boundary layer at x = x j−1. Suppose �[ j−1,r ] is
the orbit of the solution z(ξ) = (

φ(ξ), u(ξ), c1(ξ), c2(ξ), c3(ξ), J1, J2, J3, x j−1
)

with z(0) ∈ Bj−1 and lim
ξ→+∞ z(ξ) = z(+∞) ∈ Z j . Then,

(i1) φ(ξ) is determined by the Hamiltonian system

φ′′ +
3∑

k=1

zkc
[ j−1]
k e−zk

(
φ−φ[ j−1]) + Q j = 0,

together with the boundary conditions φ(0) = φ[ j−1] and φ(+∞) =
φ[ j−1,r ], where φ[ j−1,r ] is the unique solution that satisfies

3∑
k=1

zkc
[ j−1]
k e−zk

(
φ−φ[ j−1]) + Q j = 0;

(i2) u(ξ) = φ′(ξ) with u(0) = u[ j−1,r ] and u(+∞) = 0, where

u[ j−1,r ] = sgn
(
φ[ j−1,r ] − φ[ j−1])√K[ j−1,r ], (2.5)

with

K[ j−1,r ] =
3∑

k=1

2c[ j−1]
k

(
1 − ezk

(
φ[ j−1]−φ[ j−1,r ])) − 2Q j

(
φ[ j−1] − φ[ j−1,r ]);
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(i3) ck(ξ) = c[ j−1]
k e−zk

(
φ(ξ)−φ[ j−1])

with

ck(0) = c[ j−1]
k and c[ j−1,r ]

k = ck(+∞) = c[ j−1]
k e−zk

(
φ[ j−1,r ]−φ[ j−1])

.

(i4) The stable manifold Ws(Z j ) intersects B j−1 transversally at points

(
φ[ j−1], u[ j−1,r ], c[ j−1]

1 , c[ j−1]
2 , c[ j−1]

3 , J1, J2, J3, x j−1
)
,

and the ω-limit set of N [ j−1,r ] = M [ j−1,r ] ∩ Ws(Z j ) is

ω(N [ j−1,r ]) =
{(

φ[ j−1,r ], 0, c[ j−1,r ]
1 , c[ j−1,r ]

2 , c[ j−1,r ]
3 , J1, J2, J3, x j−1

) : all J1,
J2, J3

}
.

(ii) Let �[ j,l] ⊂ N [ j,l] be a boundary layer at x = x j . Suppose �[ j,l] is the orbit
of the solution z(ξ) = (

φ(ξ), u(ξ), c1(ξ), c2(ξ), c3(ξ), J1, J2, J3, x j−1
)
with

z(0) ∈ Bj and lim
ξ→−∞ z(ξ) = z(−∞) ∈ Z j . Then,

(ii1) φ(ξ) is determined by the Hamiltonian system

φ′′ +
3∑

k=1

zkc
[ j]
k e−zk

(
φ−φ[ j]) + Q j = 0,

together with the boundary conditions φ(0) = φ[ j] and φ(−∞) = φ[ j,l],
where φ[ j,l] is the unique solution that satisfies

3∑
k=1

zkc
[ j]
k e−zk

(
φ−φ[ j]) + Q j = 0;

(ii2) u(ξ) = φ′(ξ) with u(0) = u[ j,l] and u(−∞) = 0, where

u[ j,l] = sgn
(
φ[ j,l] − φ[ j])√K[ j,l], (2.6)

with

K[ j,l] =
3∑

k=1

2c[ j]
k

(
1 − ezk

(
φ[ j]−φ[ j,l])) − 2Q j

(
φ[ j] − φ[ j,l]);

(ii3) ck(ξ) = c[ j]
k e−zk

(
φ(ξ)−φ[ j])

with

ck(0) = c[ j]
k and c[ j,l]

k = ck(−∞) = c[ j]
k e−zk

(
φ[ j,l]−φ[ j])

.
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(ii4) The unstable manifold Wu(Z j ) intersects B j transversally at points

(
φ[ j], u[ j,l], c[ j]

1 , c[ j]
2 , c[ j]

3 , J1, J2, J3, x j
)
,

and the α-limit set of N [ j,l] = M [ j,l] ∩ Wu(Z j ) is

α(N [ j,l]) =
{(

φ[ j,l], 0, c[ j,l]
1 , c[ j,l]

2 , c[ j,l]
3 , J1, J2, J3, x j

) : all J1, J2, J3
}

.

Proof We defer the proof to “Appendix Sect. 6”. �	

To end this section, we comment that the transversality of the intersection M [ j−1,r ] ∩
Ws(Z j ) indicates that

dim(N [ j−1,r ]) = dim(M [ j−1,r ]) + dim(Ws(Z j )) − 9 = 4.

Therefore, N [ j−1,r ] consists of 3-parameter (with the parameters J1, J2 and J3) family
of orbits from Bj−1 to Z j . They are the candidates for the boundary layer �[ j−1,r ] at
x j−1. Similarly, N [ j,l] consists of the familywith parameter J1, J2 and J3 of candidates
for the boundary layer �[ j,l] at x j . In order to obtain orbits that connect Bj−1 to Bj ,
one need construct regular orbits on the slow manifold Z j that connect ω(N [ j−1,r ])
and α(N [ j,l]), which will be discussed in the next section.

2.1.2 Slow Dynamics and Regular Layers

In this section, we focus on the flow in the vicinity of the slow manifold Z j and con-
struct regular layers
 j that connect ω(N [ j−1,r ]) and α(N [ j,l]). Notice that, restricted
onto Z j , system (1.9) is degenerate in the sense that all dynamical information on the
state variable (φ, c1, c2, c3) gets lost. To remedy it, we rescale the dependent variables
(some other standard approach is introduced in Liu (2009)) by introducing

u = εp, z3c3 = −z(c1 + c2) − Q j − εq. (2.7)

With these new variables, the system (1.9) becomes (recall that z1 = z2 := z)

φ̇ =p, ε ṗ = q − ε
h′(τ )

h(τ )
p, εq̇ = (

z(z − z3)(c1 + c2) − z3Q j − εz3q
)
p + T c

h(τ )
,

ċ1 = − zpc1 − J1
h(τ )

, ċ2 = −zpc2 − J2
h(τ )

, J̇1 = J̇2 = J̇3 = 0, τ̇ = 1,

(2.8)

where T c = z(J1 + J2) + z3 J3.

123



Journal of Nonlinear Science            (2021) 31:55 Page 15 of 62    55 

The corresponding limiting system of (2.8) reads

φ̇ =p, 0 = q, 0 = (
z(z − z3)(c1 + c2) − z3Q j

)
p + T c

h(τ )
,

ċ1 = − zpc1 − J1
h(τ )

, ċ2 = −zpc2 − J2
h(τ )

, J̇1 = J̇2 = J̇3 = 0, τ̇ = 1.
(2.9)

The slow manifold of this system is given by

S j =
{
p = − T c

h(τ )
(
z(z − z3)(c1 + c2) − z3Q j

) , q = 0
}
.

The limiting slow dynamics on S j is governed by system (2.9), which now reads

φ̇ = − T ch−1(τ )

z(z − z3)(c1 + c2) − z3Q j
, ċ1 = T ch−1(τ )zc1

z(z − z3)(c1 + c2) − z3Q j
− J1

h(τ )
,

ċ2 = T ch−1(τ )zc2
z(z − z3)(c1 + c2) − z3Q j

− J2
h(τ )

, J̇1 = J̇2 = J̇3 = 0, τ̇ = 1.

(2.10)

Notice that, on S j where q = 0, from (2.7), one has z(c1 + c2) + Q j = −z3c3,
and hence, z(z − z3)(c1 + c2) − z3Q j = z2(c1 + c2) + z23c3 > 0, since ck’s are the
concentrations of ion species, and we are only interested in solutions with ck > 0 for
k = 1, 2, 3.

Note also that since h(τ ) > 0 and z(z − z3)(c1 + c2) − z3Q j > 0, system (2.10)
has the same phase portrait as that of the following system obtained by multiplying(
z(z − z3)(c1 + c2) − z3Q j

)
h(τ ) on the right-hand side of system (2.10):

dφ

dy
= − T c,

dc1
dy

= T czc1 − J1
(
z(z − z3)(c1 + c2) − z3Q j

)
,

dc2
dy

=T czc2 − J2
(
z(z − z3)(c1 + c2) − z3Q j

)
,

dJk
dy

=0,
dτ

dy
= h(τ )

(
z(z − z3)(c1 + c2) − z3Q j

)
.

(2.11)

For convenience in our following discussion, we further introduce, for j = 1, 2, 3 and
k = 1, 2

Tm =J1 + J2 + J3, C [ j−1,r ] = c[ j−1,r ]
1 + c[ j−1,r ]

2 , C [ j,l] = c[ j,l]
1 + c[ j,l]

2 ,

C [k] =c[k]
1 + c[k]

2 , L = L1 + L2, R = R1 + R2.

(2.12)
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Lemma 2.4 There is a unique solution (φ(y), c1(y), c2(y), J1, J2, J3, τ (y)) of (2.11)
such that

(
φ(0), c1(0), c2(0), τ (0)

) = (
φ[ j−1,r ], c[ j−1,r ]

1 , c[ j−1,r ]
2 , x j−1

)
and(

φ(y j ), c1(y j ), c2(y j ), τ (y j )
) = (

φ[ j,l], c[ j,l]
1 , c[ j,l]

2 , x j
)
for some y j > 0, where

φ[ j−1,r ], φ[ j,l], c[ j−1,r ]
1 , c[ j,l]

1 , c[ j−1,r ]
2 and c[ j,l]

2 are given in Proposition 2.3. It is
given by

φ(y) = φ[ j−1,r ] − T cy, c1(y) = J2c
[ j−1,r ]
1 − J1c

[ j−1,r ]
2

J1 + J2
ezT

c y − J1 · A j (y),

c2(y) = J1c
[ j−1,r ]
2 − J2c

[ j−1,r ]
1

J1 + J2
ezT

c y − J2 · A j (y),
∫ τ

x j−1

1

h(s)
ds = z − z3

z3Tm

(
ezz3T

m y − 1
)(

C [ j−1,r ] + (J1 + J2)Q j

zTm

)
− T c

Tm
Q j y,

(2.13)

where A j (y) = Q j
zTm

(
1 − ezz3T

m y
) − C [ j−1,r ]

J1+J2
ezz3T

m y and J1, J2 and J3 are uniquely
determined as

φ[ j,l] = φ[ j−1,r ] − T cy j , c[ j,l]
1 = J2c

[ j−1,r ]
1 − J1c

[ j−1,r ]
2

J1 + J2
ezT

c y j − J1 · A j (y j ),

c[ j,l]
2 = J1c

[ j−1,r ]
2 − J2c

[ j−1,r ]
1

J1 + J2
ezT

c y j − J2 · A j (y j ),

Tm = (z − z3)(C [ j,l] − C [ j−1,r ]) + z3Q j (φ
[ j,l] − φ[ j−1,r ])

z3(H(x j ) − H(x j−1))
.

(2.14)

Proof Integrating the dφ
dy −equation from 0 to y in (2.11) yields

φ(y) = φ[ j−1,r ] − T cy.

Adding the dc1
dy −equation and the dc2

dy −equations in (2.11) gives

d(c1 + c2)

dy
= zz3T

m(c1 + c2) + z3(J1 + J2)Q j ,

from which, via variation of constant formula, one has

c1(y) + c2(y) = C [ j−1,r ]ezz3Tm y − (J1 + J2)Q j

zTm
(1 − ezz3T

m y). (2.15)

Plugging (2.15) into the dc1
dy −equation, after regrouping some terms, we have

dc1
dy

=zT cc1 − J1

[
z(z − z3)

(
C [ j−1,r ] + J1 + J2

zTm
Q j

)
ezz3T

m y − T c

Tm
Q j

]
.
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Again, via the variation of constant formula, after some careful calculations, one has

c1(y) = J2c
[ j−1,r ]
1 − J1c

[ j−1,r ]
2

J1 + J2
ezT

c y + J1

[
C [ j−1,r ]

J1 + J2
ezz3T

m y + Q j

zTm

(
ezz3T

m y − 1
)]

= J2c
[ j−1,r ]
1 − J1c

[ j−1,r ]
2

J1 + J2
ezT

c y − J1A j (y),

where

A j (y) = Q j

zTm

(
1 − ezz3T

m y) − C [ j−1,r ]

J1 + J2
ezz3T

m y .

Similarly, one has

c2(y) = J1c
[ j−1,r ]
2 − J2c

[ j−1,r ]
1

J1 + J2
ezT

c y − J2 · A j (y).

From the last equation in (2.11), one has

dτ

h(τ )
= (

z(z − z3)(c1 + c2) − z3Q j
)
dy.

Integrating the left hand side from x j−1 to τ , and the right hand side from 0 to y,
together with (2.15) gives

∫ τ

x j−1

1

h(s)
ds =z(z − z3)

∫ y

0

(
C [ j−1,r ]ezz3Tms − (J1 + J2)Q j

zTm (1 − ezz3T
ms)

)
ds − z3Q j y

= z − z3
z3Tm

(
ezz3T

m y − 1
)(

C [ j−1,r ] + J1 + J2
zTm Q j

)

− (z − z3)(J1 + J2)

Tm Q j y − z3Q j y

= z − z3
z3Tm

(
ezz3T

m y − 1
)(

C [ j−1,r ] + J1 + J2
zTm Q j

)
− T c

Tm Q j y.

Recall that we seek for solutions to reach α(N [ j,l]); that is, whenever τ(y) = x j , we

require φ(y) = φ[ j,l], c1(y) = c[ j,l]
1 and c2(y) = c[ j,l]

2 . Assume τ(y j ) = x j for

some y j > 0. Then, φ(y j ) = φ[ j,l], c1(y j ) = c[ j,l]
1 and c2(y j ) = c[ j,l]

2 . Evaluating
system (2.13) at y = y j , careful calculation gives system (2.14). This completes the
proof. �	

We comment that

• In general, the discussion in the proof of Lemma 2.4 does not work if the two
cations have distinct ion valences, even for the case with Q(x) = 0 over the
whole interval [0, 1]. For the case that the cations have distinct valences, some
different approach can be employed to obtain implicit solutions of ck’s based on
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some specific structure of the model. To be specific, with z1 �= z2, that is, the two
cations have distinct ion valences, the dck

dy − equation in (2.11) can be written as

(
dc1
dy
dc2
dy

)
=

(
z1T c + z1(z3 − z1)J1 z2(z3 − z2)J1

z1(z3 − z1)J2 z2T c + z2(z3 − z2)J2

) (
c1
c2

)

+ z3Q j

(
J1
J2

) (2.16)

a linear system in (c1, c2), which can be directly solved via the variation of constant
formula (see also Liu 2009).

• There are 4-unknowns (J1, J2, J3) and y j , and 4 equations. Based on the above
analysis, associated to each solution, one is able to construct a singular orbit
�[ j−1,r ] ∪ 
 j ∪ �[ j,l] over the interval [x j−1, x j ].
The slow orbit


 j = (
φ(x), c1(x), c2(x), J1, J2, J3, τ (x)

)
(2.17)

given in Lemma 2.4 connects ω(N [ j−1,r ]) and α(N [ j,l]). Let M̄ [ j−1,r ] (resp. M̄ [ j,l])
be the forward (resp. backward) image ofω(N [ j−1,r ]) (resp. α(N [ j,l])) under the slow
flow (2.9). One has the following result to be used in the proof of Theorem 2.7 (the
proof follows exactly the same line as Proposition 3.7 in Section 3.1.2 of Lin et al.
(2013)).

Proposition 2.5 On the seven-dimensional slow manifold Z j , M̄ [ j−1,r ] and M̄ [ j,l]
intersect transversally along the unique orbit 
 j given in (2.17).

2.2 Singular Orbits over [0, 1]

To have a singular orbit over the whole interval [0, 1], one need to match all the
singular orbits �[ j−1,r ] ∪
 j ∪�[ j,l] constructed over each subinterval [x j−1, x j ]. For
convenience, for each j = 1, 2, 3, denote Jk’s by J [ j]

k ’s over the interval [x j−1, x j ],
and then, the matching conditions are

u[ j,l] = u[ j,r ] at each x j for j = 1, 2; and J [ j]
k = J [ j+1]

k for k = 1, 2; j = 1, 2,

where u[ j,l] and u[ j,r ] are determined in Proposition 2.3, and J [ j]
k ’s are determined via

system (2.14). Notice that the number of matching conditions is 8, which is exactly
the number of preassigned unknowns in (2.1).

For Q1 = Q3 = 0 and Q2 = Q0 (correspondingly, y1 and y3 will not be needed,
and for convenience, we take y2 = y0 in the following discussion), the abovematching
conditions give a set of nonlinear algebra equations, the so-called governing system
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(noting that z1 = z2 = z)

0 = zc[1]
1 ez

(
φ[1]−φ[1,r ]) + zc[1]

2 ez
(
φ[1]−φ[1,r ]) + z3c

[1]
3 ez3

(
φ[1]−φ[1,r ]) + Q0,

0 = zc[2]
1 ez

(
φ[2]−φ[2,l]) + zc[2]

2 ez
(
φ[2]−φ[2,l]) + z3c

[2]
3 ez3

(
φ[2]−φ[2,l]) + Q0,

0 = C [1](ez(φ[1]−φ[1,r ]) − ez(φ
[1]−φ[1,l])) + c[1]

3

(
ez3(φ

[1]−φ[1,r ]) − ez3(φ
[1]−φ[1,l]))

+ Q0
(
φ[1] − φ[1,r ]),

0 = C [2](ez(φ[2]−φ[2,r ]) − ez(φ
[2]−φ[2,l])) + c[2]

3

(
ez3(φ

[2]−φ[2,r ]) − ez3(φ
[2]−φ[2,l]))

− Q0
(
φ[2] − φ[2,l]),

J1 = C [0,r ] − C [1,l]

lnC [0,r ] − lnC [1,l]
lnC [0,r ] − lnC [1,l]ez

(
φ[1,l]−φ[0,r ])

C [0,r ] − C [1,l]ez(φ[1,l]−φ[0,r ])

× c[0,r ]
1 − c[1,l]

1 ez
(
φ[1,l]−φ[0,r ])

H(x1)

= C [2,r ] − C [3,l]

lnC [2,r ] − lnC [3,l]
lnC [2,r ] − lnC [3,l]ez

(
φ[3,l]−φ[2,r ])

C [2,r ] − C [3,l]ez(φ[3,l]−φ[2,r ])

× c[2,r ]
1 − c[3.l]

1 ez
(
φ[3,l]−φ[2,r ])

H(1) − H(x2)
,

J2 = C [0,r ] − C [1,l]

lnC [0,r ] − lnC [1,l]
lnC [0,r ] − lnC [1,l]ez

(
φ[1,l]−φ[0,r ])

C [0,r ] − C [1,l]ez(φ[1,l]−φ[0,r ])

× c[0,r ]
2 − c[1,l]

2 ez
(
φ[1,l]−φ[0,r ])

H(x1)

= C [2,r ] − C [3,l]

lnC [2,r ] − lnC [3,l]
lnC [2,r ] − lnC [3,l]ez

(
φ[3,l]−φ[2,r ])

C [2,r ] − C [3,l]ez(φ[3,l]−φ[2,r ])

× c[2,r ]
2 − c[3,l]

2 ez
(
φ[3,l]−φ[2,r ])

H(1) − H(x2)
,

J3 = − z

z3

C [0,r ] − C [1,l]

lnC [0,r ] − lnC [1,l] · lnC
[0,r ] − lnC [1,l]ez3

(
φ[1,l]−φ[0,r ])

H(x1)

= − z

z3

C [2,r ] − C [3,l]

lnC [2,r ] − lnC [3,l] · lnC
[2,r ] − lnC [3,l]ez3

(
φ[3,l]−φ[2,r ])

H(1) − H(x2)
,

φ[2,l] = φ[1,r ] − T cy0, c[2,l]
1 = J2c

[1,r ]
1 − J1c

[1,r ]
2

J1 + J2
ezT

c y0 − J1 · A2(y0),

c[2,l]
2 = J1c

[1,r ]
2 − J2c

[1,r ]
1

J1 + J2
ezT

c y0 − J2 · A2(y0),

Tm = (z − z3)(C [2,l] − C [1,r ]) + z3Q0(φ
[2,l] − φ[1,r ])

z3(H(x2) − H(x1))
,

(2.18)
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where

A2(y0) = Q0

zTm

(
1 − ezz3T

m y0
) − C [1,r ]

J1 + J2
ezz3T

m y0

and

φ[0,r ] = V − 1

z − z3
ln

−z3L3

zL
, c[0,r ]

1 = L1

(−z3L3

zL

) z
z−z3 ,

c[0,r ]
2 = L2

(−z3L3

zL

) z
z−z3 ,

c[0,r ]
3 = L3

(−z3L3

zL

) z3
z−z3 , φ[1,l] = φ[1] − 1

z − z3
ln

−z3c
[1]
3

zC [1] ,

c[1,l]
1 = c[1]

1

(−z3c
[1]
3

zC [1]
) z

z−z3 ,

c[1,l]
2 = c[1]

2

(−z3c
[1]
3

zC [1]
) z

z−z3 , c[1,l]
3 = c[1]

3

(−z3c
[1]
3

zC [1]
) z3

z−z3 ,

φ[2,r ] = φ[2] − 1

z − z3
ln

−z3c
[2]
3

zC [2] ,

c[2,r ]
1 = c[2]

1

(−z3c
[2]
3

zC [2]
) z

z−z3 , c[2,r ]
2 = c[2]

2

(−z3c
[2]
3

zC [2]
) z

z−z3 ,

c[2,r ]
3 = c[2]

3

(−z3c
[2]
3

zC [2]
) z3

z−z3 ,

φ[3,l] = − 1

z − z3
ln

−z3R3

zR
, c[3,l]

1 = R1

(−z3R3

zR

) z
z−z3 ,

c[3,l]
2 = R2

(−z3R3

zR

) z
z−z3 , c[3,l]

3 = R3

(−z3R3

zR

) z3
z−z3 ,

c[1,r ]
1 = c[1]

1 ez(φ
[1]−φ[1,r ]), c[1,r ]

2 = c[1]
2 ez(φ

[1]−φ[1,r ]), c[1,r ]
3 = c[1]

3 ez3(φ
[1]−φ[1,r ]),

c[2,l]
1 = c[2]

1 ez(φ
[2]−φ[2,l]), c[2,l]

2 = c[2]
2 ez(φ

[2]−φ[2,l]), c[2,l]
3 = c[2]

3 ez3(φ
[2]−φ[2,l]).

(2.19)

Recall that
(
φ[1], c[1]

1 , c[1]
2 , c[1]

3

)
and

(
φ[2], c[2]

1 , c[2]
2 , c[2]

3

)
are the unknown values pre-

assigned at x = x1 and x = x2, J1, J2 and J3 are the unknown values for the flux
densities of the three ion species. There are also three auxiliary unknowns φ[1,r ], φ[2,l]
and y0 in (2.18). The total number of unknowns in (2.18) is fourteen, which matches
the total number of equations.

Remark 2.6 A qualitative important question is whether the set of nonlinear equations
(2.18) (in general, we call it a governing system) has a unique solution. This can be
studied through bifurcation analysis and numerical simulations, which is beyond the
aim of this work. However, a special case is provided to show that, under some further
restrictions, multiple solutions are found.
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2.2.1 A Special Case with z = −z3 = 1 and h(x) = 1

In this part, we consider a special case with z = 1 and z3 = −1 to illustrate the
governing system (2.18) actually can have multiple solutions. Further restrictions that
x1 = 1/3, x2 = 2/3 and h(x) = 1 will be posted later merely for simplicity.

For convenience, we set

A =
√
C [1]c[1]

3 , B =
√
C [2]c[2]

3 and Q0 = 2Q.

From the first two equations of (2.18), one has

φ[1] − φ[1,r ] = ln

√
Q2 + A2 − Q

C [1] , φ[2] − φ[2,l] = ln

√
Q2 + B2 − Q

C [2] .

From the third and fourth equation of (2.18), together with φ[1] − φ[1,l] = 1
2 ln

c[1]
3

C [1]
from (2.19), we have

C [1] =(√
Q2 + A2 − Q

)
exp

{√
Q2 + A2 − A

Q

}
,

C [2] =(√
Q2 + B2 − Q

)
exp

{√
Q2 + B2 − B

Q

}
.

(2.20)

The rest equations of (2.18) become

J1 = 2(
√
LL3 − A)

ln(LL3) − ln A2 · V − φ[1] + ln L − lnC [1]

H(x1)
·

L1
L

√
LL3 − c[1]

1
C [1] Ae

δ1

√
LL3 − Aeδ1

= 2(B − √
RR3)

ln B2 − ln(RR3)

φ[2] − ln R + lnC [2]

H(1) − H(x2)

c[2]
1

C [2] B − R1
R

√
RR3eδ2

B − √
RR3eδ2

,

J2 = 2(
√
LL3 − A)

ln(LL3) − ln A2

V − φ[1] + ln L − lnC [1]

H(x1)

L2
L

√
LL3 − c[1]

2
C [1] Ae

δ1

√
LL3 − Aeδ1

= 2(B − √
RR3)

ln B2 − ln(RR3)

φ[2] − ln R + lnC [2]

H(1) − H(x2)

c[2]
2

C [2] B − R2
R

√
RR3eδ2

B − √
RR3eδ2

,

J3 = 2(
√
LL3 − A)

ln(LL3) − ln A2

φ[1] − V + ln L3 − lnC [1]
3

H(x1)

= 2(B − √
RR3)

ln B2 − ln(RR3)

lnC [2]
3 − φ[2] − ln R3

H(1) − H(x2)
,

T c
s y0 = φ[1] − φ[2] + ln

C [1](
√
Q2 + B2 − Q)

C [2](
√
Q2 + A2 − Q)

,
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Tm
s = 2(

√
Q2 + A2 − √

Q2 + B2) − 2QT c
s y0

H(x2) − H(x1)
,

0 = Q −
√
Q2 + B2 +

√
Q2 + A2 − Q

eTm
s y0

− 2Q(J1 + J2)

Tm
s

(
1 − e−Tm

s y0
)

,

0 = J1
(√

Q2 + B2 − Q − (√
Q2 + A2 − Q

)
eT

c
s y0

)

− (J1 + J2)

(
c[2]
1

C [2]
(√

Q2 + B2 − Q
) − c[1]

1

C [1]
(√

Q2 + A2 − Q
)
eT

c
s y0

)
,

(2.21)

where

Tm
s =J1 + J2 + J3, T c

s = J1 + J2 − J3,

δ1 =φ[1] − V + 1

2
ln

L3

L
− 1

2
ln

c[1]
3

C [1] , δ2 = 1

2
ln

c[2]
3

C [2] − φ[2] − 1

2
ln

R3

R
.

The first three equations in (2.21), together with the T c
s y0 equation in (2.21), and

(2.20), we have

Tm
s = 2

√
LL3 − A

H(x1)
= 2

B − √
RR3

H(1) − H(x2)
= 2

A − B − Q
(
φ[1] − φ[2])

H(x2) − H(x1)
. (2.22)

It follows that

Tm
s = 2

√
LL3 − √

RR3 − Q
(
φ[1] − φ[2])

H(1)
,

B = H(1) − H(x2)

H(x1)
(
√
LL3 − A) + √

RR3,

φ[1] − φ[2] = (
√
LL3 − √

RR3)H(x1) − (
√
LL3 − A)H(1)

QH(x1)
,

T c
s y0 =

√
Q2 + A2 − √

Q2 + B2

Q
+ (A − √

LL3)(H(x2) − H(x1))

QH(x1)
.

(2.23)

Adding the first two equations of (2.21), one has

J1 + J2 =2(
√
LL3 − A)

H(x1)

V − φ[1] + ln L − lnC [1]

ln(LL3) − ln A2

=2(B − √
RR3)

H(1) − H(x2)

φ[2] − ln R + lnC [2]

ln B2 − ln(RR3)
.
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Using
√
LL3−A
H(x1)

= B−√
RR3

H(1)−H(x2)
from (2.22), we get

V − φ[1] + ln L − lnC [1]

ln(LL3) − ln A2 = φ[2] − ln R + lnC [2]

ln B2 − ln(RR3)
.

Together with (2.23), we obtain

φ[2] = ln B2 − ln(RR3)

ln(LL3B2) − ln(RR3A2)

(
V + ln

L
(√

Q2 + B2 − Q
)

R
(√

Q2 + A2 − Q
)

−
√
Q2 + A2 − √

Q2 + B2

Q
− (A − √

LL3)(H(x2) − H(x1))

QH(x1)

)

+ ln R − ln
(√

Q2 + B2 − Q
) −

√
Q2 + B2 − B

Q
.

Together with the J1 equation of (2.21), one has

L1
L

√
LL3 − c[1]

1
C [1] Ae

δ1

√
LL3 − Aeδ1

=
c[2]
1

C [2] B − R1
R

√
RR3eδ2

B − √
RR3eδ2

=
c[2]
1

C [2]
(√

Q2 + B2 − Q
) − c[1]

1
C [1]

(√
Q2 + A2 − Q

)
eT

c
s y0

(√
Q2 + B2 − Q

) − (√
Q2 + A2 − Q

)
eT c

s y0
,

(2.24)

and it follows that

L1
L

√
LL3 − c[1]

1
C [1] Ae

δ1

√
LL3 − Aeδ1

=
c[1]
1

C [1]

√
Q2+A2−Q√
Q2+B2−Q

BeT
c
s y0 − R1

R

√
RR3eδ2

√
Q2+A2−Q√
Q2+B2−Q

BeT c
s y0 − √

RR3eδ2

.

Hence,

c[1]
1 =

C [1]
(√

Q2+A2−Q√
Q2+B2−Q

√
LL3BeT

c
s y0 − √

RR3Aeδ1+δ2

)

√
LL3RR3eδ2

(
R1
R − L1

L

)
+

√
Q2+A2−Q√
Q2+B2−Q

L1
L

√
LL3BeT

c
s y0 − R1

R

√
RR3Aeδ1+δ2

.

Correspondingly, c[2]
1 , c[1]

2 and c[2]
2 can be expressed in terms of A through (2.24),

c[1]
1 + c[1]

2 = C [1] and c[2]
1 + c[2]

2 = C [2].
Now, all the variables in (2.21) can be expressed in terms of A. Substituting into

the last equation in (2.21), we will get an equation F(A) = 0 in the variable only. The
expression of F(A) is complicated but can be given explicitly.
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We now assume further that x1 = 1/3, x2 = 2/3 and h(x) = 1. Note that L3 = L
and R3 = R under electroneutrality boundary conditions. Then,

B = L + R − A, Tm
s = 6(L − A),

C [1] = (√
Q2 + A2 − Q

)
exp

{√
Q2 + A2 − A

Q

}
,

C [2] = (√
Q2 + B2 − Q

)
exp

{√
Q2 + B2 − B

Q

}
,

φ[1] − φ[2] = 3A − 2L − R

Q
,

φ[2] = ln B − ln R

ln(LB) − ln(RA)

(
V + ln

L
(√

Q2 + B2 − Q
)

R
(√

Q2 + A2 − Q
)

+
√
Q2 + B2 − √

Q2 + A2 + L − A

Q

)
+ ln

R√
Q2 + B2 − Q

−
√
Q2 + B2 − B

Q
,

T c
s = 6(L − A)

ln(LB) − ln(RA)

(
V +

√
Q2 + B2 − √

Q2 + A2 + L − A

Q

+ ln
L
(√

Q2 + B2 − Q
)

R
(√

Q2 + A2 − Q
)
)

− 6(L − A),

y0 = −
√
Q2 + B2 − √

Q2 + A2 + L − A

QT c
s

,

0 =
(√

Q2 + A2 + QT c
s

Tm
s

)
e−Tm

s y0 −
√
Q2 + B2 + QT c

s

Tm
s

.

(2.25)

The final equation in (2.25) that involves the only unknown A is F(A) = 0, where

F(A) =
(√

Q2 + A2 + QT c
s

6(L − A)

)
eκ(A) −

√
Q2 + B2 − QT c

s

6(L − A)
, (2.26)

where

κ(A) = −Tm
s y0 = 6(L − A)

√
Q2 + B2 − √

Q2 + A2 + L − A

QT c
s

,

B = L + R − A, and T c
s is given above.

In summary, for the special case with

z = −z3 = 1, x1 = 1/3, x2 = 2/3, h(x) = 1,
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Fig. 1 Schematic picture of a singular orbit projected to the space of (u, z1cz + z2c2 + z3c3, τ ) with
Q1 = Q3 = 0 and Q2 = Q0. Boundary layers �[0,r ] and �[3,l] exist if electroneutrality boundary
conditions are not assumed

the set of nonlinear algebraic equations is equivalent to F(A) = 0, where F(A) is

given in (2.26). The expression F(A) involves only one unknown A =
√
C [1]c[1]

3 .
Other system parameters in F(A) are L = L1 + L2, L3, R = R1 + R2, R3, V and Q.

In particular, for L1 = L2 = 1, L3 = 2, R1 = 2, R2 = 1, R3 = 3, Q0 = 2Q =
0.02 and V = −20,we find, numerically, two solutions of F(A) = 0 : A1 = 2.27130
and A2 = 2, where the latter is a removable singularity of the functions F(A), Ji ’s,
φ[1] and φ[2].

Once the value of A is determined, all the unknowns will be determined. One then
obtain a singular orbit consists of nine pieces �[0,r ] ∪ 
1 ∪ �[1,l] ∪ �[1,r ] ∪ 
2 ∪
�[2,l] ∪ �[2,r ] ∪ 
3 ∪ �[3,l] (see Fig. 1).

2.3 Existence of Solutions Near the Singular Orbit

Note that any solution of the set of algebraic equations determines a singular orbit for
the connection problem. Once a singular orbit is constructed, one can apply geometric
singular perturbation theory to show that, for ε > 0 small, there is a unique solution
that is close to the singular orbit.

For our case, the singular orbit consists of nine pieces: two boundary layers �[0,r ]
and �[3,l]; four internal layers �[1,l], �[1,r ], �[2,l] and �[2,r ]; and three regular layers

1, 
2 and 
3 (see Fig. 1). More precisely, with J = (J1, J2, J3),
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(1) Along the boundary layer �[0,r ]: Since B0 = BL intersects Ws(Z1) transver-
sally, M [0,r ](ε)will first follow the orbit �[0,r ] towards the vicinity ofZ1 under
the inner limit flow (2.3) with Q(x) = 0 near x = x0 = 0;

(2) Along regular layer 
1: Once M [0,r ](ε) gets close to Z1, the outer limit flow
(2.10) with Q(x) = 0 takes over, and M [0,r ](ε) will then follow the outer flow
on Z1 or S1 along the orbit 
1 towards the hypersurface {x = x1};

(3) Along the internal layer �[1,l]: Near but before {x = x1}, M [0,r ](ε) will leave
the vicinity of Z1, follow the orbit �[1,l] under the inner limit flow (2.3) with
Q(x) = 0 near x = x1, and hit the hypersurface {x = x1};

(4) Along the internal layer �[1,r ]: Upon hitting the hypersurface {x = x1}, the
flow switches to the inner limit flow (2.3) with Q(x) = Q0. M [0,r ](ε) then
follows �[1,r ] towards the vicinity of Z2;

(5) Along the regular layer 
2: Once M [0,r ](ε) gets close to Z2, the outer limit
flow (2.10) with Q(x) = Q0 takes over, and M [0,r ](ε) will then follows the
outer flow on Z2 or S2 along the orbit 
2 towards the hypersurface {x = x2};

(6) Along the internal layer �[2,l]: Near but before {x = x2}, M [0,r ](ε) will leave
the vicinity of Z2, follow the orbit �[2,l] under the inner limit flow (2.3) with
Q(x) = Q0 near x = x2, and hit the hypersurface {x = x2};

(7) Along the internal layer�[2,r ]: Upon hitting the hypersurface {x = x2}, the flow
switches to the inner limit flow (2.3) with Q(x) = 0. M [0,r ](ε) then follows
�[2,r ] towards the vicinity of Z3;

(8) Along the regular layer 
3: Once M [0,r ](ε) gets close to Z3, the outer limit
flow (2.10) with Q(x) = 0 takes over, and M [0,r ](ε)will then follows the outer
flow on Z3 or S3 along the orbit 
3 towards the hypersurface {x = x3 = 1};

(9) Along the boundary layer �[3,l]: Near but before {x = 1}, M [0,r ](ε) will leave
the vicinity of Z3, follow the orbit �[3,l] under the inner limit flow (2.3) with
Q(x) = 0 near x = 1. If it hits B3 = BR , then we get our solution.

The following result can be established by the exchange lemma (see, for exam-
ple, Jones 1995; Jones and Kopell 1994; Tin et al. 1994) of the geometric singular
perturbation theory (see also Eisenberg and Liu 2007; Liu 2005, 2009; Liu and Xu
2015).

Theorem 2.7 Let �[0,r ] ∪ 
1 ∪ �[1,l] ∪ �[1,r ] ∪ 
2 ∪ �[2,l] ∪ �[2,r ] ∪ 
3 ∪ �[3,l]
be the singular orbit of the connecting problem system (1.9) associated with BL and
BR in system (1.10). There exists ε0 > 0 small, so that if 0 < ε < ε0, then the
boundary value problem (1.7)–(1.8) has a unique solution near the singular orbit
�[0,r ] ∪ 
1 ∪ �[1,l] ∪ �[1,r ] ∪ 
2 ∪ �[2,l] ∪ �[2,r ] ∪ 
3 ∪ �[3,l].

Proof Fix δ > 0 small to be determined. Let

BL(δ) =
{
(V , u, L1, L2, L3, J1, J2, J3, 0) ∈ R

9 : |u − u[0,l]| < δ, |Ji − J [0,l]
i | < δ

}
.

For ε > 0, let M [0,r ](ε, δ) be the forward trace of BL(δ) under the flow of system
(1.9) or equivalently of system (2.2) and let M [1,l](ε) be the backward trace of BR .
To prove the existence and uniqueness statement, it suffices to show that M [0,r ](ε, δ)
intersects M [1,l](ε) transversally in a neighborhood of the singular orbit �[0,r ] ∪
1 ∪
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�[1,l] ∪�[1,r ] ∪
2 ∪�[2,l] ∪�[2,r ] ∪
3 ∪�[3,l]. This will be established by applying
the exchange lemma successively (three times) along the stages described above. The
first application of the exchange lemma verifies the descriptions for stages (1), (2),
and (3); the second one for stages (4), (5), and (6); and the last application verifies the
descriptions for stages (7), (8), and (9). The discussions are similar, and hence, we
will just provide detailed argument for the first application that handles stages (1)-(3).

Notice that dim BL(δ)=4. It is clear that the vector field of the fast system (2.2)
is not tangent to BL(δ) for ε ≥ 0, and hence, dim M [0,r ](ε, δ)=5. We next apply the
Exchange Lemma to track M [0,r ](ε, δ) in the vicinity of �[0,r ] ⋃ 
1

⋃
�[1,l]. First of

all, the transversality of the intersection BL(δ)
⋂

Ws(Z1) along �0 in Proposition 2.3
implies the transversality of the intersection M [0,r ](0, δ)

⋂
Ws(Z1). Secondly, we

have also established that dimω(N [0,r ]) = dim N [0,r ] − 1 = 3 in Proposition 2.3
and that the limiting slow flow is not tangent to ω(N [0,r ]) in Sect. 2.1.2. Under these
conditions, the Exchange Lemma (Jones 1995; Jones and Kopell 1994; Tin et al. 1994)
states that there exist ρ > 0 and ε1 > 0 so that, if 0 < ε ≤ ε1, then M [0,r ](ε, δ) will
first follow �[0,r ] toward ω(N [0,r ]) ⊂ Z1, then follow the trace of ω(N [0,r ]) in the
vicinity of 
1 towards {τ = x1}, leave the vicinity of Z1, and, upon exiting, a portion
of M [0,r ](ε, δ) is C1 O(ε)-close to Wu(ω(N [0,r ]) × (x1 − ρ, x1)) in the vicinity of
�[1,l]. Note that dimWu(ω(N [0,r ]) × (x1 − ρ, x1)) = dim M [0,r ](ε, δ) = 5.

It remains to show thatWu(ω(N [0,r ])× (x1 −ρ, x1)) intersects M [1,l](ε) transver-
sally since M [0,r ](ε, δ) isC1 O(ε)-close toWu(ω(N [0,r ])×(x1−ρ, x1)). Recall that,
for ε = 0, M [1,l] intersects Wu(Z1) transversally along N [1,l] (Proposition 2.3); in
particular, at γ1 := α(�[1,l]) ∈ α(N [1,l]) ⊂ Z1, we have

Tγ1M
[1,l] = Tγ1α(N [1,l]) ⊕ Tγ1W

u(γ1) ⊕ span{Vs},

where, Tγ1W
u(γ1) is the tangent space of the one-dimensional unstable fiber Wu(γ1)

at γ1 and the vector Vs /∈ Tγ1W
u(Z1) (the latter follows from the transversality of the

intersection of M [1,l] and Wu(Z1)). Also,

Tγ1W
u(ω(N [0,r ]) × (x1 − ρ, x1)) = Tγ1(ω(N [0,r ]) · x1) ⊕ span{Vτ } ⊕ Tγ1W

u(γ1),

where the vector Vτ is the tangent vector to the τ -axis as a result of the interval factor
(x1 − ρ, x1). From Proposition 2.5, ω(N [0,r ]) · x1 and α(N [1,l]) are transversal on
Z1 ∩{τ = x1}. Therefore, at γ1, the tangent spaces Tγ1M

[1,l] and Tγ1W
u(ω(N [0,r ])×

(x1 − ρ, x1)) contain seven linearly independent vectors: Vs , Vτ , Tγ1W
u(γ1) and the

other four from Tγ1(ω(N [0,r ])·1) and Tγ1α(N [1,l]); that is,M [1,l] andWu(ω(N [0,r ])×
(x1 − ρ, x1)) intersect transversally. We thus conclude that, there exists 0 < ε0 ≤ ε1
such that, if 0 < ε ≤ ε0, then M [0,r ](ε, δ) intersects M [1,l](ε) transversally.

For uniqueness, note that the transversality of the intersection M [0,r ](ε, δ) ∩
M [1,l](ε) implies dim(M [0,r ](ε, δ)∩ M [1,l](ε)) = dim M [0,r ](ε, δ)+dim M [1,l](ε)−
9 = 1. Thus, there exists δ0 > 0 such that, if 0 < δ ≤ δ0, the intersection
M [0,r ](ε, δ) ∩ M [1,l](ε) consists of precisely one solution near the singular orbit
�[0,r ] ∪ 
1 ∪ �[1,l].

To deal with the stages (4)-(6), one may get start by denoting the intersection of
Wu(N [0,r ] × (x1 − ρ, x1)) with {x = x1} by I (x1). Then I (x1) intersects Ws(Z2)
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transversally for the flow (2.10) with Q = Q0. Let K (x1) be the forward trace of
I (x1) under (1.9) with Q(x) = Q0. The exchange lemma implies that M [0,r ](ε) will
first follow K (x1) in the vicinity of �[1,r ] towards ω(N [1,r ]) ⊂ Z2, then follows the
trace of ω(N [1,r ]) in the vicinity of 
2 towards {x = x2}, and leave the vicinity of
Z2. And upon exit, M [0,r ](ε) is C1 O(ε)− close to Wu(N [1,r ] × (x2 − ρ1, x2)), for
some ρ1 > 0, in the vicinity of �[2,l].

Similar argument applies to the stage (7)-(9). Eventually, one is able to prove
that there exists δ0 > 0 (may need to be refined) such that, if 0 < δ ≤ δ0, the
intersection M [0,r ](ε, δ) ∩ M [3,l] consists of precisely one solution near the singular
orbit �[0,r ] ∪
1∪�[1,l] ∪�[1,r ] ∪
2 ∪�[2,l] ∪�[2,r ] ∪
3∪�[3,l](ε). This completes
the proof. �	

2.4 Expansion of Singular Solutions in Small |Q0|

To get started, we expand all unknown quantities in the governing system (2.18) and
(2.19) in Q0 under the assumption that |Q0| is small, for example, for j = 1, 2 and
k = 1, 2, 3, we write

φ[ j] =φ
[ j]
0 + φ

[ j]
1 Q0 + φ

[ j]
2 Q2

0 + o(Q2
0), c[ j]

k = c[ j]
k0 + c[ j]

k1 Q0 + c[ j]
k2 Q

2
0 + o(Q2

0),

y0 =y00 + y01Q0 + y02Q
2
0 + o(Q2

0), Jk = Jk0 + Jk1Q0 + Jk2Q
2
0 + o(Q2

0).

(2.27)

For the above expansions, we will determine the coefficients of the zeroth-order
and first-order terms for dominating effects on ionic flows from the permanent charge.
For convenience, we introduce

α =H(x1)

H(1)
, β = H(x2)

H(1)
, C [1]

i = c[1]
1i + c[1]

2i , C [2]
i = c[2]

1i + c[2]
2i , i = 0, 1.

(2.28)

and, corresponding to (2.12), we have Tm
0 = J10 + J20 + J30.

Careful calculations lead to the following statements, which are crucial for our later
analysis, in particular, the explicit expressions for Jk0 and Jk1 obtained in Proposi-
tions 2.8 and 2.11.

Proposition 2.8 The zeroth-order solution in Q0 of system (2.18)–(2.19), for k = 1, 2
is given by

φ
[1,l]
0 = φ

[1,r ]
0 = φ

[1]
0 = lnC [1]

0 − lnC [3,l]

lnC [0,r ] − lnC [3,l] φ
[0,r ] + lnC [0,r ] − lnC [1]

0

lnC [0,r ] − lnC [3,l] φ
[3,l],

φ
[2,l]
0 = φ

[2,r ]
0 = φ

[2]
0 = lnC [2]

0 − lnC [3,l]

lnC [0,r ] − lnC [3,l] φ
[0,r ] + lnC [0,r ] − lnC [2]

0

lnC [0,r ] − lnC [3,l] φ
[3,l],

c[1,l]
k0 = c[1,r ]

k0 = c[1]
k0
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= C [1]
0

(
c[0,r ]
k − c[3,l]

k ez
(
φ[3,l]−φ[0,r ])) + (

C [0,r ]c[3,l]
k − c[0,r ]

k C [3,l])ez
(
φ[3,l]−φ

[1]
0

)

C [0,r ] − C [3,l]ez
(
φ[3,l]−φ[0,r ]

) ,

c[2,l]
k0 = c[2,r ]

k0 = c[2]
k0

= C [2]
0

(
c[0,r ]
k − c[3,l]

k ez
(
φ[3,l]−φ[0,r ])) + (

C [0,r ]c[3,l]
k − c[0,r ]

k C [3,l])ez
(
φ[3,l]−φ

[2]
0

)

C [0,r ] − C [3,l]ez
(
φ[3,l]−φ[0,r ]

) ,

y00 = H(1)
(
lnC [2]

0 − lnC [1]
0

)

z(z − z3)
(
C [3,l] − C [0,r ]) , c[1]

30 = − z

z3
C [1]
0 , c[2]

30 = − z

z3
C [2]
0 .

In particular,

J10 = C [0,r ] − C [3,l]

H(1)
(
lnC [0,r ] − lnC [3,l])

lnC [0,r ] − lnC [3,l] − z(φ[3,l] − φ[0,r ])
C [0,r ] − C [3,l]ez(φ[3,l]−φ[0,r ])

×
(
c[0,r ]
1 − c[3,l]

1 ez
(
φ[3,l]−φ[0,r ]))

,

J20 = C [0,r ] − C [3,l]

H(1)
(
lnC [0,r ] − lnC [3,l])

lnC [0,r ] − lnC [3,l] − z(φ[3,l] − φ[0,r ])
C [0,r ] − C [3,l]ez(φ[3,l]−φ[0,r ])

×
(
c[0,r ]
2 − c[3,l]

2 ez
(
φ[3,l]−φ[0,r ]))

,

J30 = − z

z3

C [0,r ] − C [3,l]

H(1)
(
lnC [0,r ] − lnC [3,l])

(
lnC [0,r ] − lnC [3,l] − z3

(
φ[3,l] − φ[0,r ])) ,

where C [1]
0 = (1 − α)C [0,r ] + αC [3,l] and C [2]

0 = (1 − β)C [0,r ] + βC [3,l].

Proof We defer the proof to “Appendix Sect. 6”. �	
The following result is critical in deriving first-order solutions in small Q0.

Lemma 2.9 One has, for k = 1, 2

zC [k]
1 + z3c

[k]
31 = − 1

2
, φ

[1,r ]
1 = φ

[1]
1 + 1

2z(z − z3)C
[1]
0

, φ
[2,l]
1 = φ

[2]
1

+ 1

2z(z − z3)C
[2]
0

.

Proof We will provide a detailed proof for the first identity with k = 1 and the second
identity. Others can be proved similarly. By the first-order expansion in Q0 of the third
equation in (2.18) and the results in Proposition 2.8, we obtain

φ
[1]
1 − φ

[1,r ]
1 = − zC [1]

1 + z3c
[1]
31 + 1

z2C [1]
0 + z23c

[1]
30

. (2.29)
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The second order term in Q0 of the first equation in (2.18) gives

1

2

(
z2C [1]

0 + z23c
[1]
30

)(
φ

[1]
1 − φ

[1,r ]
1

)2 − 1

2

(
z2C [1]

0 + z23c
[1]
30

)(
φ

[1]
1 − φ

[1,l]
1

)2

+ (
zC [1]

1 + z3c
[1]
31

)(
φ

[1]
1 − φ

[1,r ]
1

) − (
zC [1]

1 + z3c
[1]
31

)(
φ

[1]
1 − φ

[1,l]
1

)

+ φ
[1]
1 − φ

[1,r ]
1 = 0.

Substituting (2.29) into the above equation, together with Proposition 2.8, we have

(
zC [1]

1 + z3c
[1]
31

)2
z(z − z3)C

[1]
0

=
(
zC [1]

1 + z3c
[1]
31 + 1

)2
z2C [1]

0 + z23c
[1]
30

.

Note that z(z − z3)C
[1]
0 = z2C [1]

0 + z23c
[1]
30 . One has zC [1]

1 + z3c
[1]
31 = −(

zC [1]
1 +

z3c
[1]
31 + 1

)
, which gives the first two identities. �	

From (2.19), together with Proposition 2.8 and Lemma 2.9, the following result can
be established directly.

Lemma 2.10 One has, for k = 1, 2, 3,

φ
[1,l]
1 =φ

[1]
1 − 1

2z(z − z3)C
[1]
0

, c[1,l]
k1 = c[1]

k1 + c[1]
k0

2(z − z3)C
[1]
0

, c[1,r ]
k1 = c[1]

k1

− c[1]
k0

2(z − z3)C
[1]
0

,

φ
[2,r ]
1 =φ

[2]
1 − 1

2z(z − z3)C
[2]
0

, c[2,r ]
k1 = c[2]

k1 + c[2]
k0

2(z − z3)C
[2]
0

, c[2,l]
k1 = c[2]

k1

− c[2]
k0

2(z − z3)C
[2]
0

.

It then follows

Proposition 2.11 The first-order solutions in Q0 are given by, for k = 1, 2,

c[1]
k1 = 1

C [0,r ] − C [3,l]ez(φ[3,l]−φ[0,r ])

[(
c[0,r ]
k − c[3,l]

k ez(φ
[3,l]−φ[0,r ]))C [1]

1 + C [1]
0

(
c[0,r ]
k

− c[3,l]
k ez(φ

[3,l]−φ[0,r ])) − c[1]
k0

(
C [0,r ] − C [3,l]ez(φ[3,l]−φ[0,r ]))],

c[2]
k1 = 1

C [0,r ] − C [3,l]ez(φ[3,l]−φ[0,r ])

{(
c[0,r ]
k − c[3,l]

k ez(φ
[3,l]−φ[0,r ]))C [2]

1

+
(

1

2(z − z3)C
[2]
0

+ zφ[2,r ]
1

)[
C [2]
0

(
c[0,r ]
k − c[3,l]

k ez(φ
[3,l]−φ[0,r ]))

− c[2]
k0

(
C [0,r ] − C [3,l]ez(φ[3,l]−φ[0,r ]))

]}
,
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φ
[1]
1 = (1 + zλ) (1 + z3λ)

(
C [1]
0 − C [2]

0

)(
lnC [0,r ] − lnC [1]

0

)

z(z − z3)C
[1]
0 C [2]

0

(
lnC [0,r ] − lnC [3,l]) + 1 + 2zz3α

(
φ

[2]
0 − φ

[1]
0

)
λ

2z(z − z3)C
[1]
0

,

φ
[2]
1 = − (1 + zλ) (1 + z3λ)

(
C [1]
0 − C [2]

0

)(
lnC [2]

0 − lnC [3,l])

z(z − z3)C
[1]
0 C [2]

0

(
lnC [0,r ] − lnC [3,l])

+ 1 + 2zz3(β − 1)
(
φ

[2]
0 − φ

[1]
0

)
λ

2z(z − z3)C
[2]
0

,

y01 =
(
C [1]
0 (β − 1) − C [2]

0 α
)(

φ
[2]
0 − φ

[1]
0

)

z(z − z3)C
[1]
0 C [2]

0 Tm
0

+
(
lnC [1]

0 − lnC [2]
0

)(
φ

[2]
0 − φ

[1]
0

)

z(z − z3)
(
C [3,l] − C [0,r ])Tm

0

+
(
C [2]
0 − C [1]

0

)
(z3 (J10 + J20) + z J30)

z2z3(z − z3)C
[1]
0 C [2]

0

(
Tm
0

)2 .

In particular,

J11 = c[0,r ]
1 − c[3,l]

1 ez
(
φ[3,l]−φ[0,r ])

C [0,r ] − C [3,l]ez(φ[3,l]−φ[0,r ])
M (1 + zλ)

(z − z3)H(1)
(z3(1 − N )λ + 1) ,

J21 = c[0,r ]
2 − c[3,l]

2 ez
(
φ[3,l]−φ[0,r ])

C [0,r ] − C [3,l]ez(φ[3,l]−φ[0,r ])
M (1 + zλ)

(z − z3)H(1)
(z3(1 − N )λ + 1) ,

J31 = M (1 + z3λ)

(z3 − z)H(1)
(z(1 − N )λ + 1) ,

where

C [1]
1 = z3α

(
φ

[2]
0 − φ

[1]
0

)

z − z3
− 1

2(z − z3)
, C [2]

1 = z3(β − 1)
(
φ

[2]
0 − φ

[1]
0

)

z − z3
− 1

2(z − z3)
,

λ = φ[0,r ] − φ[3,l]

lnC [0,r ] − lnC [3,l] , M =
(
C [3,l] − C [0,r ])(C [1]

0 − C [2]
0

)

C [1]
0 C [2]

0

(
lnC [0,r ] − lnC [3,l]) ,

N = lnC [2]
0 − lnC [1]

0

M
= C [1]

0 C [2]
0

(
lnC [0,r ] − lnC [3,l]) (

lnC [2]
0 − lnC [1]

0

)
(
C [3,l] − C [0,r ]) (

C [1]
0 − C [2]

0

) .

Remark 2.12 Following the argument in Bates et al. (2017), we can extend the result
to the case with n − 1 cations having the same valences for arbitrary n ≥ 4 (n is the
total number of ion species involved in the system).

3 Permanent Charge and Channel Geometry Effects on Individual
Fluxes

Our focus in this section is to examine the effects on the individual fluxes from small
permanent charge and channel geometry in terms of (α, β) defined in (2.28). For
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convenience, we introduce

L−
d = D1L1 − D2L2, R−

d = D1R1 − D2R2. (3.1)

3.1 Some Preparations

Our analysis will be under the so-called electroneutrality boundary conditions. To be
specific, from now on, we always assume that

zL + z3L3 = 0 and zR + z3R3 = 0. (3.2)

To get started, we rewrite the zeroth-order and the first-order terms of the individual
flux under electroneutrality boundary conditions (3.2).

Lemma 3.1 Under electroneutrality conditions (3.2), one has φ[0,r ] = V , c[0,r ]
i =

Li , φ[3,l] = 0, c[3,l]
i = Ri , i = 1, 2, 3 and, for k = 1, 2,

Jk0 = L − R

H(1) (ln L − ln R)

ln L − ln R + zV

L − Re−zV

(
Lk − Rke

−zV
)

,

J30 = − z

z3

L − R

H(1) (ln L − ln R)
(ln L − ln R + z3V ) ,

Jk1 = ln L − ln R + zV

L − Re−zV

M (z3(1 − N )V + ln L − ln R)

(z − z3)H(1) (ln L − ln R)2

(
Lk − Rke

−zV
)

,

J31 = M (z3V + ln L − ln R) (z(1 − N )V + ln L − ln R)

(z3 − z)H(1) (ln L − ln R)2
,

(3.3)

where

M = (β − α) (L − R)2

ω(α)ω(β) (ln R − ln L)
, N = lnω(β) − lnω(α)

M
, (3.4)

with

ω(x) = (1 − x)L + x R. (3.5)

In particular, for N = 1, and k = 1, 2, one has

Jk1 = ln L − ln R + zV

L − Re−zV

(
lnω(β) − lnω(α)

) (
Lk − Rke−zV

)

(z − z3)H(1) (ln L − ln R)
,

J31 =
(
lnω(β) − lnω(α)

)
(z3V + ln L − ln R)

(z3 − z)H(1) (ln L − ln R)
.

(3.6)

Directly, from (3.3) and (3.4), one has the following observation.

Lemma 3.2 One has
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(i) The quantities M = M(L1, L2, R1, R2) and N = N (L1, L2, R1, R2) scale
invariantly in (L1, L2, R1, R2), that is, for any s > 0, M(sL1, sL2, sR1, sR2) =
M(L1, L2, R1, R2) and N (sL1, sL2, sR1, sR2) = N (L1, L2, R1, R2).

(ii) The quantities Jk0 = Jk0(V ; L1, L2, R1, R2), k = 1, 2, 3 scale linearly in
(L1, L2, R1, R2), and Jk1 = Jk1(V ; L1, L2, R1, R2), k = 1, 2, 3 scale invari-
antly in (L1, L2, R1, R2), that is, for any s > 0,

Jk0(V ; sL1, sL2, sR1, sR2) = s Jk0(V ; L1, L2, R1, R2),

Jk1(V ; sL1, sL2, sR1, sR2) = Jk1(V ; L1, L2, R1, R2).

For convenience, we introduce a function γ (t) for t > 0 with

γ (t) =
⎧
⎨
⎩

t ln t−t+1
(t−1) ln t , t �= 1,

1
2 , t = 1.

(3.7)

For γ (t), one can easily established the following properties.

Lemma 3.3 For t > 0, one has 0 < γ (t) < 1, γ ′(t) > 0, limt→0 γ (t) = 0 and
limt→∞ γ (t) = 1.

Lemma 3.4 Let t = L/R. M has the same sign with that of R − L, that is, if t > 1
(resp. t < 1), then M < 0 (resp. M > 0).

Proof Note that 0 < α < β < 1 from (2.28) and ω(α) > 0 and ω(β) > 0 from (3.5).
Then, M has the same sign as that of (ln R − ln L) from (3.4), and our result follows
directly. �	

We would like to point out that in our following discussion including the one in
Sect. 4, the sign of the termM(1−N ) is critical.While the sign ofM can be determined
by R − L as stated in Lemma 3.4, we now establish the result, which characterizes
the sign of 1 − N . The critical potentials V1 and V2 in Lemma 3.5 are defined in
Definition 3.7. Throughout the paper, we assume t = L

R > 1, similar argument can be
applied to the case with t = L

R < 1.

Lemma 3.5 Let t = L/R and γ (t) be as in (3.7). Then, N > 0 and 1 − N → 0 as
t → 1. Furthermore, for t > 1, one has

(i) if α ≥ γ (t), then, z
z3

< 0 < 1 − N and V1 < 0 < V2;
(ii) if α < γ (t) < α − z

z3 ln t
, then, there exists a unique β1 ∈ (α, 1) such that

z
z3

< 1 − N < 0 and V2 < V1 < 0 for β ∈ (α, β1); 1 − N = 0 for β = β1;
z
z3

< 0 < 1 − N and V1 < 0 < V2 for β ∈ (β1, 1).
(iii) if γ (t) > α − z

z3 ln t
, then, there exists a unique β∗

1 ∈ (α, β1) such that 1− N <
z
z3

< 0 and V1 < V2 < 0 for β ∈ (α, β∗
1 ); 1 − N = z

z3
< 0 and V2 = V1 < 0

for β = β∗
1 ;

z
z3

< 1 − N < 0 and V2 < V1 < 0 for β ∈ (β∗
1 , β1); 1 − N = 0

for β = β1,
z
z3

< 0 < 1 − N and V1 < 0 < V2, for β ∈ (β1, 1).
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Proof We defer the proof to the “Appendix Sect. 6”. �	
Following from Lemmas 3.4 and 3.5 that

Lemma 3.6 Let t = L/R > 1 and γ (t) be as in (3.7). One has

(i) N = 1 if α < γ (t) and β = β1;
(ii) M(1 − N ) > 0 if α < γ (t) and β ∈ (α, β1);
(iii) M(1 − N ) < 0 if α < γ (t) and β ∈ (β1, 1).

3.2 Critical Potentials and Analysis of Jk1

We are now ready to analyze Jk1’s, the leading terms that contains the effects from the
small permanent charge, which further depends on complicated nonlinear interplays
among other system parameters, especially the channel geometry. It consists of three
subsections. More precisely, Sect. 3.2.1 deals with the sign of Jk1, which provides
important information on whether the small permanent charge reduces or enhances
the individual flux Jk ; In Sect. 3.2.2, we focus on the effects from small permanent
charge on the magnitude of Jk , more precisely, we study the signs of Jk0 Jk1; while
in Sect. 3.2.3, we consider the monotonicity of Jk1 to investigate how the boundary
potentials will further interact with the small permanent charge.

We first identify some critical potentials that will play crucial roles in our following
discussion.

Definition 3.7 We define five critical potentials V1, V2, V3, V4 and V5 by

L − Re−zV1 = 0, z3(1 − N )V2 + ln L − ln R = 0, L1 − R1e
−zV3 = 0,

L2 − R2e
−zV4 = 0, L−

d − R−
d e

−zV5 = 0,

where L−
d R−

d > 0. Furthermore, for N �= 1, one has

V1 = 1

z
ln

R

L
, V2 = 1

z3(1 − N )
ln

R

L
, V3 = 1

z
ln

R1

L1
, V4 = 1

z
ln

R2

L2
, V5 = 1

z
ln

R−
d

L−
d

.

Remark 3.8 Actually, V2 and V3 are the zeros of J11(V ); V2 and V4 are the zeros of
J21(V ). V3 is also the zero of J10(V ), and V4 is also the zero of J20(V ). z

z3
V1 and

z3
z V2

are the zeros of J31(V ). z
z3
V1 is also the zero of J30(V ). V5 is defined for the discussion

related to the competition between cations. We would like to further point out that the
critical potentials V2, V3, V4, z

z3
V1 and z

z3
V2 could be estimated experimentally. To

be precise, taking the potential V2 and V3 for example, one can take an experimental
individual flux as J1(V ; Q0) (this may be difficult but possible for some cases) and
numerically (or analytically) compute J10(V ; 0) for ideal case that allows one to get
estimates of V2 and V3 by considering the zeros of J1(V ; Q0) − J10(V ; 0). Those
critical values play critical roles in characterizing ionic flow properties, they split the
potential region into subregions, from which different dynamics of ionic flows are
observed. This could provide deep insights into the study of ion channel problems and
better understanding of the mechanism of the electrodiffusion phenomena.
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3.2.1 Signs of Jk1

The study of the sign of Jk1 consists of two parts: the first part deals with the individual
fluxes of the cations, while the second part focuses on the individual flux of the anion.
Small positive permanent charge effects on Jk for k = 1, 2. We first establish the
following result.

Lemma 3.9 Let t = L/R > 1 and γ (t) be as in (3.7). For k = 1, 2, one has

(i) M(1−N ) > 0 and V2 > V2+k if t < L1/R1, γ (t) > α− z
z3 ln t

and β ∈ (α, β∗
1 ].

(ii) M(1 − N ) < 0 and V2 > V2+k under one of the following conditions

(ii1) Lk/Rk > 1 and α ≥ γ (t);
(ii2) Lk/Rk > 1, α < γ (t) < α − z

z3 ln t
and β ∈ (β1, 1);

(ii3) Lk/Rk > 1, γ (t) > α − z
z3 ln t

and β ∈ (β1, 1).

(iii) M(1 − N ) > 0 and V2 < V2+k under one of the following conditions

(iii1) t > 1 > Lk/Rk, α < γ (t) < α − z
z3 ln t

and β ∈ (α, β1);
(iii2) t > Lk/Rk > 1, α < γ (t) < α − z

z3 ln t
and β ∈ (α, β1);

(iii3) t > 1 > Lk/Rk, γ (t) > α − z
z3 ln t

and β ∈ (α, β1);
(iii4) t > Lk/Rk > 1, γ (t) > α − z

z3 ln t
and β ∈ (β∗

1 , β1).

Proof These statements can be derived directly from Lemmas 3.4 and 3.5. Taking
statement (i) with k = 1 for example, for 1 < t = L

R < L1/R1, γ (t) > α − z
z3 ln t

and
β ∈ (α, β∗

1 ], one has M < 0 from Lemma 3.4 and 1 − N < z
z3

< 0 from statement

(iii) of Lemma 3.5. It follows that M(1−N ) > 0 and 0 < 1
z3(1−N )

< 1
z . Note that 0 <

ln L
R < ln L1

R1
. Then, 1

z3(1−N )
ln L

R < 1
z ln

L1
R1
, and further, − 1

z3(1−N )
ln t > − 1

z ln
L1
R1
,

that is, V2 > V3. �	
As we mentioned earlier (the discussion above Lemma 3.5), the sign of M(1− N )

plays critical role in our analysis. Lemma 3.9 further characterizes this key term, and
meanwhile provide conditions for the order of some critical potentials identified in
Definition 3.7. Following the above argument, together with (3.3), directly, one has

Theorem 3.10 Suppose that N �= 1. For the term Jk1 with k = 1, 2, one has

(i) Under the condition stated in the statement (i) of Lemma 3.9, one has, Jk1 < 0
if V < V2+k or V > V2, and Jk1 > 0 if V2+k < V < V2, that is, (small) positive
permanent charge reduces the individual flux Jk if V < V2+k or V > V2, and
enhances Jk if V2+k < V < V2;

(ii) Under one of the conditions stated in the statement (ii) of Lemma 3.9, one has,
Jk1 > 0 if V < V2+k or V > V2, and Jk1 < 0 if V2+k < V < V2, that is,
(small) positive permanent charge enhances the individual flux Jk if V < V2+k

or V > V2, and reduces Jk if V2+k < V < V2;
(iii) Under one of the conditions stated in the statement (iii) of Lemma 3.9, one has,

Jk1 < 0 if V < V2 or V > V2+k , and Jk1 > 0 if V2 < V < V2+k , that is,
(small) positive permanent charge reduces the individual flux Jk if V < V2 or
V > V2+k , and enhances Jk if V2 < V < V2+k .
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In particular, for N = 1, one has, Jk1 > 0 (resp. Jk1 < 0) if V < V2+k (resp.
V > V2+k), that is, (small) positive permanent charge enhances (resp. reduces) the
individual flux Jk if V < V2+k (resp. V > V2+k).

Small positive permanent charge effects on J3. For the individual flux J3. We first
establish the following result, which will be important to study the sign of J31.

Lemma 3.11 Set t = L/R > 1 and γ (t) be as in (3.7). One has

(i) if α ≥ γ (t), then z3
z < 0 < 1 − N and z

z3
V1 > 0 > z3

z V2.
(ii) if α < γ (t) < α − z3

z ln t , then then, there exists a unique β1 ∈ (α, 1) such that
z3
z < 1 − N < 0 and z3

z V2 > z
z3
V1 > 0 for β ∈ (α, β1);

z3
z < 1 − N = 0 for

β = β1;
z3
z < 0 < 1 − N and z

z3
V1 > 0 > z3

z V2 for β ∈ (β1, 1).
(iii) if γ (t) > α − z3

z ln t , then, there exists a unique β∗
11 ∈ (α, β1) such that 1 − N <

z3
z < 0 and z

z3
V1 > z3

z V2 > 0 for β ∈ (α, β∗
11); 1 − N = z3

z < 0 and
z3
z V2 = z

z3
V1 < 0 for β = β∗

11;
z3
z < 1 − N < 0 and z3

z V2 > z
z3
V1 > 0

for β ∈ (β∗
11, β1);

z3
z < 1 − N = 0 for β = β1;

z3
z < 0 < 1 − N and

z
z3
V1 > 0 > z3

z V2 for β ∈ (β1, 1).

To further examine the small permanent charge effects on the individual flux J3,
we establish the following result, which can be verified easily based on Lemmas 3.4
and 3.11.

Lemma 3.12 Set t = L/R > 1 and γ (t) be as in (3.7). One has

(i) M(1 − N ) < 0 and z3
z V2 < z

z3
V1 under one of the following conditions

(i1) α ≥ γ (t);
(i2) α < γ (t) < α − z3

z ln t and β ∈ (β1, 1);
(i3) γ (t) > α − z3

z ln t and β ∈ (β1, 1).

(ii) M(1 − N ) > 0 and z3
z V2 < z

z3
V1 if γ (t) > α − z3

z ln t and β ∈ (α, β∗
11).

(iii) M(1 − N ) > 0 and z3
z V2 > z

z3
V1 under one of the following conditions

(iii1) α < γ (t) < α − z3
z ln t and β ∈ (α, β1);

(iii2) γ (t) > α − z3
z ln t and β ∈ (β∗

11, β1).

Directly from Lemma 3.12 and (3.3), one has

Theorem 3.13 Suppose N �= 1. For the term J31, one has

(i) Under one of the conditions stated in the first statement (i) of Lemma 3.12, one
has, J31 < 0 if V < z

z3
V2 or V > z3

z V1, and J31 > 0 if z
z3
V2 < V < z3

z V1, that
is, (small) positive permanent charge reduces the individual flux J3 if V < z

z3
V2

or V > z3
z V1, and enhances J3 if

z
z3
V2 < V < z3

z V1;
(ii) Under the condition stated in the second statement (ii) of Lemma 3.12, one has,

J31 > 0 if V < z
z3
V2 or V > z3

z V1, and J31 < 0 if z
z3
V2 < V < z3

z V1, that is,
(small) positive permanent charge enhances the individual flux J3 if V < z

z3
V2

or V > z3
z V1, and reduces J3 if

z
z3
V2 < V < z3

z V1;
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(iii) Under one of the conditions stated in the third statement (iii) of Lemma 3.12,
one has, J31 > 0 if V < z3

z V1 or V > z
z3
V2, and J31 < 0 if z3

z V1 < V < z
z3
V2,

that is, (small) positive permanent charge enhances the individual flux J3 if
V < z3

z V1 or V > z
z3
V2, and reduces J3 if

z3
z V1 < V < z

z3
V2.

In particular, for N = 1, one has, J31 > 0 (resp. J31 < 0) if V > z
z3
V1 (resp.

V < z
z3
V2), that is, small positive permanent charge enhances (resp. reduces) the

individual flux J3 if V > z
z3
V1 (resp. V < z

z3
V1).

Remark 3.14 In this part, we examine the sign of Jk1, the first-order term containing
small permanent charge effects. The sign of Jk1 is critical, which determines whether
the small positive permanent charge enhances or reduces the individual flux Jk . More
precisely, based on the expansion Jk = Jk0 + Q0 Jk1 + o(Q0) with Q0 > 0, if
Jk1 > 0, then, clearly, the term Jk1 will enhance the individual flux Jk , otherwise, it
will reduce the individual flux Jk . Critical potentials identified in Definition 3.7 play
very important roles in our study. Our analysis indicates that the sign of Jk1 sensitively
depend on other physical parameters involved in the system, especially, the ratio L

R
with L = L1 + L2 and R = R1 + R2 and the channel geometry in terms of (α, β),
where α = H(x1)

H(1) and β = H(x2)
H(1) . Meanwhile, the analysis, especially the nonlinear

interplays among those system parameters help one better understand the internal
dynamics of the ionic flows through membrane channels, which cannot be observed
with present technique. Moreover, the interactions among those system parameters
are not intuitive, such as the interplays among α, γ (t) and α − z3

z ln t with t = L
R in

Lemma 3.12, and mathematical analysis is necessary.

3.2.2 Effects on the Magnitude of Jk

We study the effects on the magnitude of the individual fluxes from the small positive
permanent charges. Based on the discussion from the previous sections, particularly
Lemma 3.4, the following results can be established.

Theorem 3.15 Suppose that N �= 1. For t = L/R > 1, one has

(i) if either α ≥ γ (t), or α < γ (t) and β ∈ (β1, 1), then,
z3
z V2 < 0 < V2 and

(i1) for V ∈ ( z3z V2, V2), J10 J11 < 0, J20 J21 < 0 and J30 J31 > 0, that is, (small)
positive permanent charge reduces both |J1| and |J2| while enhances |J3|;

(i2) for V > V2, J10 J11 > 0, J20 J21 > 0 and J30 J31 > 0, that is, (small)
positive permanent charge enhances |J1|, |J2| and |J3|;

(i3) for V < z3
z V2, J10 J11 < 0, J20 J21 < 0 and J30 J31 < 0, that is, (small)

positive permanent charge reduces |J1|, |J2| and |J3|.
(ii) if α < γ (t) and β ∈ (α, β1), then, V2 < 0 < z3

z V2 and

(ii1) for V ∈ (V2,
z3
z V2), J10 J11 < 0, J20 J21 < 0 and J30 J31 > 0, that is,

(small) positive permanent charge reduces |J1| and |J2| while enhances
|J3|;

(ii2) for V < V2, J10 J11 > 0, J20 J21 > 0 and J30 J31 > 0, that is, (small)
positive permanent charge enhances |J1|, |J2| and |J3|;
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(ii3) for V > z3
z V2, J10 J11 < 0, J20 J21 < 0 and J30 J31 < 0, that is, (small)

positive permanent charge reduces |J1|, |J2| and |J3|.
In particular, for N = 1, one has J10 J11 < 0, J20 J21 < 0 and J30 J31 > 0, that is,
(small) positive permanent charge reduces both |J1| and |J2| while enhances |J3|.
Proof From (3.3), it is easy to see that the sign of J10 J11 (resp. J20 J21) is determined
by that of z3M(1 − N )(V − V2), while the sign of J30 J31 is determined by the sign
of 1

z3−z M(1 − N )(V − z3
z V2). Together with Lemmas 3.4 and 3.5, one can easily

established the results. �	
Remark 3.16 From Theorem 3.15, we observe that, depending on the boundary con-
ditions and channel geometry, in terms of (α, β), a small positive permanent charge

(i) can reduce the fluxes of both cations and enhance that of anion;
(ii) can enhance the fluxes of both cations and anion;
(iii) can reduce the fluxes of both cations and anion;
(iv) but cannot enhance the flux of any cation while reduce that of anion.

This observation is consistent with the result obtained in Ji et al. (2015) (Theorems
4.7 and 4.8) for the PNP system with just one cation and one onion. A conjecture
we would like to make here is that for the classical PNP model, the small positive
permanent charge cannot enhance the flux of any cation while reduce that of anion
assuming only one type of anion included!

3.2.3 Monotonicity of Jk1

In this section, we focus on the monotonicity of the leading terms Jk1 as functions of
the potential V for fixed boundary concentrations.

To get started, we point out that a similar argument as that in the proof of lemma 3.5
provides sufficient conditions to determine the sign of the quantity C defined by

C = 1

1 − N

( z

z3
ln t − (ln t + 2)(1 − N )

)
, (3.8)

which will be used in the proof of Theorem 3.18.

Lemma 3.17 Set t = L/R > 1 with γ (t) being as in (3.7). One has

(i) if α ≥ γ (t), then, C < 0 for β ∈ (α, 1);
(ii) if α < γ (t) < α − z

z3(ln t+2) , then, C > 0 for β ∈ (α, β1) and C < 0 for
β ∈ (β1, 1).

(iii) if γ (t) > α− z
z3(ln t+2) , then, there exists a unique β̄1 ∈ (α, β1) such that C < 0

for β ∈ (α, β̄1); C = 0 for β = β̄1; C > 0 for β ∈ (β̄1, β1) and C < 0 for
β ∈ (β1, 1).

Theorem 3.18 Suppose that N �= 1. For k = 1, 2, one has,

(i) for Jk1,
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(i1) if M(1 − N ) < 0, then, there exists a critical V 1
k1 between V2 and Vk+2

such that Jk1(V ) decreases on (−∞, V 1
k1) and increases on (V 1

k1,+∞);
(i2) if M(1 − N ) > 0, then, there exists a critical V 2

k1 between V2 and Vk+2

such that Jk1(V ) increases on (−∞, V 2
k1) and decreases on (V 2

k1,+∞).

(ii) for J31,

(ii1) if M(1−N ) < 0, then, there exists a critical V 1
31 = 1

2

( z
z3
V1+ z3

z V2
)
between

z
z3
V1 and

z3
z V2 such that J31(V ) increases on (−∞, V 1

31) and decreases on

(V 1
31,+∞);

(ii2) if M(1−N ) > 0, then, there exists a critical V 2
31 = 1

2

( z
z3
V1+ z3

z V2
)
between

z
z3
V1 and

z3
z V2 such that J31(V ) decreases on (−∞, V 2

31) and increases on

(V 2
31,+∞).

In particular, for N = 1, one has, J11(V ), J21(V ) and J31(V ) decrease in V .

Proof We defer the proof to the “Appendix Sect. 6”. �	

3.3 Effect of Channel Geometry onMagnitudes of Jk1

Recall that 0 ≤ α ≤ β ≤ 1. Rewrite Jk1, k = 1, 2 and J31 as

Jk1 = ln L − ln R + zV

L − Re−zV

p1(α, β)
(
Lk − Rke−zV

)

(z − z3)H(1) (ln L − ln R)2
,

J31 = (z3V + ln L − ln R) p2(α, β)

(z3 − z)H(1) (ln L − ln R)2
,

where

p1(α, β) = (α − β) (L − R)2 (ln L − ln R + z3V )

ω(α)ω(β) (ln L − ln R)
− z3V ln

ω(β)

ω(α)
,

p2(α, β) = (α − β) (L − R)2 (ln L − ln R + zV )

ω(α)ω(β) (ln L − ln R)
− zV ln

ω(β)

ω(α)
.

Lemma 3.19 Set t = L/R. One has

(i) Ifγ ∗
1 = γ (t)− 1

z3V
∈ (0, 1), then, themaximumof |p1(α, β)|occurswhen either

(α, β) = (0, γ ∗
1 ) or (α, β) = (γ ∗

1 , 1). Otherwise, the maximum of |p1(α, β)|
occurs when (α, β) = (0, 1).

(ii) If γ ∗
2 = γ (t)− 1

zV ∈ (0, 1), then, themaximum of |p2(α, β)| occurs when either
(α, β) = (0, γ ∗

2 ) or (α, β) = (γ ∗
2 , 1). Otherwise, the maximum of |p2(α, β)|

occurs when (α, β) = (0, 1).
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Proof We just prove the first statement for p1(α, β) and the statement for p2(α, β)

can be argued similarly. Direct computation gives

∂α p1(α, β) = (L − R)2(ln L − ln R + z3V )

ω(α)2(ln L − ln R)
− z3V (L − R)

ω(α)
,

∂β p1(α, β) = − (L − R)2(ln L − ln R + z3V )

ω(β)2(ln L − ln R)
+ z3V (L − R)

ω(β)
.

It follows that any critical point (α, β) satisfies α = β, where p1 vanishes. Since
p1(α, α) = 0 is the minimum of |p1(α, β)|. Therefore, |p1(α, β)| must attain its
maximum on the boundary of �,

{
α = 0, β ∈ [0, 1]} ∪ {α ∈ [0, 1], β = 1

}
.

Careful calculation shows that the critical point of p1(0, β) is β = γ ∗
1 , and the

critical point of p1(α, 1) is α = γ ∗
1 , where γ ∗

1 = γ (t)− 1
z3V

. Obviously, if γ (t)−1 <
1

z3V
< γ (t), then γ ∗

1 ∈ (0, 1), where t = L/R and γ (t) ∈ (0, 1) is given in (3.7).
Now we compare p1(0, γ ∗

1 ), p1(γ ∗
1 , 1) and p1(0, 1) to determine the maximum

value of |p1(α, β)|.
Direct calculation gives

p1(0, γ
∗
1 ) = −

(
1 − ω1

L
+ ln

ω1

L

)
z3V , p1(γ

∗
1 , 1) =

(
1 − ω1

R
+ ln

ω1

R

)
z3V ,

where

ω1 = (1 − γ ∗
1 )L + γ ∗

1 R = (L − R)(ln L − ln R + z3V )

(ln L − ln R)z3V
.

Note that 1 − x + ln x ≤ 0 for any x > 0 and ω1 = (1 − γ ∗)L + γ ∗R > 0,
since 0 < γ ∗

1 < 1, which indicates that p1(0, γ ∗
1 ) and p1(γ ∗

1 , 1) have opposite signs.
Note also that p1(0, γ ∗

p1)+ p1(γ ∗
1 , 1) = p1(0, 1). Therefore, for the case γ ∗ ∈ (0, 1),

|p1(α, β)| attains itsmaximumat either (0, γ ∗
1 )or (γ ∗

1 , 1); otherwise, |p1(α, β)| attains
its maximum at (0, 1). �	

From Lemma 3.19, one has

Theorem 3.20 If γ ∗
1 /∈ (0, 1), then, |J11| and |J21| attain their maximums at (0, 1). If

γ ∗
1 /∈ (0, 1), then, |J11| and |J21| attain their maximums at either (0, γ ∗

1 ) or (γ ∗
1 , 1).

If γ ∗
2 /∈ (0, 1), then, |J31| attains its maximum at (0, 1). If γ ∗

2 /∈ (0, 1), then, |J31|
attains its maximum at either (0, γ ∗

2 ) or (γ ∗
2 , 1).

To further understand the above result, we add the following remark first mentioned
in Ji et al. (2015) for a simpler setups.

Remark 3.21 Recall from (3.5) that α = H(a)/H(1) and β = H(b)/H(1). One can
easily see that α ≈ 0 and β ≈ 1 could be realized in the following two ways:
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(I) (a, b) ≈ (0, 1) and h(x) is uniform for x ∈ (0, 1);
(II) b − a � 1 and h(x) for x ∈ (a, b) is much smaller than h(x) for x /∈ [a, b].

Obviously, setting (II) indicates that the filter of the channel to which the permanent
charge is distributed is short and narrow. Notice that, to produce the same permanent
charge density Q0, it requires much more numbers of charges for setting (I) compared
to setting (II). In this sense, for ion channels, setting (II) is optimal for effects on ionic
flows from permanent charges.

One can also check that, if γ ∗ ∈ [0, 1], then the “optimal” setting is as follows (we
take J11 for example):

(i) If (α, β) = (γ ∗, 1) provides the maximum of |J11|, then, there exists some
parameter c ∈ (0, a) such that b − c � 1, and h(x) is small for x ∈ [c, b] (in
particular, for x ∈ [a, b]) and large otherwise;

(ii) If (α, β) = (0, γ ∗) provides the maximum of |J11|, then, there exists some
parameter c ∈ (b, 1) such that c − a � 1, and h(x) is small for x ∈ [a, c] and
large otherwise.

It turns out that for all cases, h(x) should be small for x ∈ [a, b] and b − a � 1,
in other words, the channel filter to which the permanent charge is distributed should
be short and narrow. This is consistent with the typical structure of an ion channel.

We finally comment that for both the simpler case studied in Ji et al. (2015) and the
more realistic and complicated one considered in this work, a stable structure of an
ion channel is observed through rigorous mathematical analysis, that is, the filter of
the ion channel, where the permanent charge is distributed, should be “narrow” and
“short” in order to optimize the effect of permanent charges. This is consistent with
the typical structure of an ion channel.

4 Competitions Between Cations

We focus on the competition between two positively charged ion species that
depends on the nonlinear interplays among system parameters, particularly, permanent
charges (Q0), channel geometry (α, β), diffusion coefficients (D1, D2) and bound-
ary conditions (L1, L2, L3, R1, R2, R3; V ), which is closely related to the selectivity
phenomena of ion channels.

We first define J1,2(V ) as

J1,2(V ) =D1 J1(V ) − D2 J2(V ) = J 0
1,2(V ) + J 1

1,2(V )Q + O(Q2), (4.1)

where, for N �= 1,

J 0
1,2(V ) =D1 J10(V ) − D2 J20(V )

= L − R

H(1) (ln L − ln R)

ln L − ln R + zV

L − Re−zV

(
L−
d − R−

d e
−zV

)
,

J 1
1,2(V ) =D1 J11(V ) − D2 J21(V )
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= Mzz3(1 − N )

(z − z3)H(1) (ln L − ln R)2
(V − V1) (V − V2)

L − Re−zV

(
L−
d − R−

d e
−zV

)
.

(4.2)

In particular, for N = 1, one has

J 1
1,2(V ) = ln L − ln R + zV

L − Re−zV

(
lnω(β) − lnω(α)

) (
L−
d − R−

d e
−zV

)

(z − z3)H(1) (ln L − ln R)
. (4.3)

This section consists of four parts based on the distinct interplays among D1
D2

, L2
L1

and R2
R1
, which strongly indicates the complexity and the rich dynamics of ionic flows

through membrane channels. In the first three parts, our analysis will focus on the sign
of J 1

1,2(V ) as a function of the potential V , which provides important information
of the preference of the ion channel over different cations; and the monotonicity of
J 1
1,2(V ), which provides insights into the control/adjustment of system parameters to

enhance/reduce the preference. Meanwhile, they reflect the effect from positive small
permanent changes on ionic flows. The fourth part focus on the magnitude ofJ1,2(V ),
which is equivalent to studying the sign of J 0

1,2(V )J 1
1,2(V ).

4.1 Case Study with D1
D2

= R2
R1

Weanalyze the termJ 1
1,2,which reflects the preference of the ion channel over different

cation under the condition D1
D2

= R2
R1
.

We first give the sufficient conditions to determine the sign of 2+z (V1 − V2)which
will be used in the proof of Theorem 4.2. Note that, for N �= 1,

2 + z (V1 − V2) = 1

1 − N

(
(2 − ln t)(1 − N ) + z

z3
ln t

)
.

The following result can be directly established.

Lemma 4.1 Set t = L/R and γ (t) be as in (3.7). One has

(i) For t > e2,

(i1) if α ≥ γ (t), then, 2 + z (V1 − V2) < 0, for β ∈ (α, 1);
(i2) if α < γ (t) < α − z

z3(ln t−2) , then, 2 + z (V1 − V2) > 0, for β ∈ (α, β1),
2 + z (V1 − V2) < 0, for β ∈ (β1, 1).

(i3) if γ (t) > α − z
z3(ln t−2) , then, there exists a unique β̃1 ∈ (α, β1) such that

2 + z (V1 − V2) < 0 for β ∈ (α, β̃1), 2 + z (V1 − V2) = 0 for β = β̃1,
2+ z (V1 − V2) > 0 for β ∈ (β̃1, β1), 2+ z (V1 − V2) < 0 for β ∈ (β1, 1).

(ii) For t = e2,

(ii1) if α ≥ γ (t), then, 2 + z (V1 − V2) < 0 for β ∈ (α, 1);
(ii2) if α < γ (t), then, 2+z (V1 − V2) > 0 for β ∈ (α, β1); 2+z (V1 − V2) < 0

for β ∈ (β1, 1).
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(iii) For 1 < t < e2,

(iii1) if α ≥ γ (t) and e
2z3
z3−z < t < e2, then, 2 + z (V1 − V2) < 0 for β ∈ (α, 1);

(iii2) if α − z
z3(ln t−2) < γ (t) ≤ α and 1 < t < e

2z3
z3−z , then, there exists a

unique β̃2 ∈ (α, 1) such that 2 + z (V1 − V2) < 0 for β ∈ (α, β̃2); 2 +
z (V1 − V2) = 0 for β = β̃2; 2 + z (V1 − V2) > 0 for β ∈ (β̃2, 1).

(iii3) if γ (t) < α − z
z3(ln t−2) , then, 2 + z (V1 − V2) > 0 for β ∈ (α, 1);

(iii4) if α < γ (t) and e
2z3
z3−z < t < e2, then, 2+ z (V1 − V2) > 0 for β ∈ (α, β1);

and 2 + z (V1 − V2) < 0 for β ∈ (β1, 1);

(iii5) if γ (t) > α and 1 < t < e
2z3
z3−z , then, there exists a unique β̃3 ∈ (β1, 1)

such that 2 + z (V1 − V2) > 0 for β ∈ (α, β1); 2 + z (V1 − V2) < 0 for
β ∈ (β1, β̃3); 2 + z (V1 − V2) = 0 for β = β̃3; and 2 + z (V1 − V2) > 0
for β ∈ (β̃3, 1).

Theorem 4.2 Assume N �= 1 and D1
D2

= R2
R1
. One has

(i) if M(1 − N )L−
d < 0, then, there exists a critical V 11

c with V 11
c < V2 such

that J 1
1,2 decreases on (−∞, V 11

c ) and increases on (V 11
c ,∞). Additionally,

J 1
1,2 < 0 for V < V2; J 1

1,2 = 0 for V = V2; and J 1
1,2 > 0, for V > V2; that

is, (small) positive permanent charge reduces J1,2 for V < V2 while enhances
J1,2 for V > V2, and the effect is balanced for V = V2.

(ii) if M(1 − N )L−
d > 0, then, there exists a critical V 12

c with V 12
c < V2 such

that J 1
1,2 increases on (−∞, V 12

c ) and decreases on (V 12
c ,∞). Additionally,

J 1
1,2 > 0 for V < V2; J 1

1,2 = 0 for V = V2; and J 1
1,2 < 0 for V > V2; that

is, (small) positive permanent charge enhances J1,2 for V < V2 while reduces
J1,2 for V > V2, and the effect is balanced for V = V2.

In particular, for N = 1, one has, if D1
D2

< L2
L1

(resp. D1
D2

> L2
L1
), then,J 1

1,2(V) increases

(resp. decreases) in the potential V ; and J 1
1,2(V ) > 0 (resp. J 1

1,2(V ) < 0), that is,
(small) positive permanent charge enhances (resp. reduces) J1,2.

Proof We just prove the first statement with N �= 1 here, and the second one can be
proved by a similar argument. The case with N = 1 can be verified directly from
(4.3). For D1

D2
= R2

R1
, one has, from (4.2),

J 1
1,2(V ) = D1 J11 − D2 J21 = Mzz3(1 − N )L−

d

(z − z3)H(1) (ln L − ln R)2
(V − V1) (V − V2)

L − Re−zV
.

It follows that

dJ 1
1,2

dV
= Mzz3(1 − N )L−

d

(z − z3)H(1) (ln L − ln R)2
e−zV

(
L − Re−zV

)2 fd1(V ),

where

fd1(V ) = (2V − V1 − V2)
(
LezV − R

)
− z (R1 + R2) (V − V1) (V − V2) ,
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and further

f ′
d1(V ) = d fd1

dV
=

(
LezV − R

) (
2 + z (2V − V1 − V2)

)
. (4.4)

From (4.4), f ′
d1(V ) has two zeros V1 and Vd1 = 1

2

(
V1 + V2 − 2

z

)
. To determine

the order of V1 and Vd1, one just need to study the sign of 2 + z (V1 − V2). In fact,
if 2 + z (V1 − V2) > 0, then V1 > Vd1, if 2 + z (V1 − V2) = 0, then V1 = Vd1, if
2 + z (V1 − V2) < 0, then V1 < Vd1.

Lemma 4.1 show the sufficient conditions to determine the sign of 2+ z (V1 − V2),
and hence further determine the order of V1 and Vd1.

If V1 < Vd1, then fd1(V ) increases on (−∞, V1), decreases on (V1, Vd1), and
increases on (Vd1,∞). Note that fd1(V1) = 0, which is a local maximum of fd1,
lim

V→−∞ fd1 = −∞ and lim
V→∞ fd1 = ∞, fd1 has the other zero V 11

c with V 11
c > V1.

Furthermore, if M(1 − N )L−
d < 0, then

lim
V→V1

dJ 1
1,2

dV
= Mz3(1 − N )L−

d (2 + z (V1 − V2))

2(z − z3)H(1) (ln L − ln R)2 L
< 0,

since 2 + z (V1 − V2) < 2 + z (2Vd1 − V1 − V2) = 0, which can be obtained from
the fact that 2+ z (2V − V1 − V2) increases on (−∞, Vd1) and V1 < Vd1. Therefore,
dJ 1

1,2
dV > 0 if V > V 11

c and
dJ 1

1,2
dV < 0 if V < V 11

c (also true for V1 ≥ Vd1, which can be
proved similarly). Statement (i) follows from lim

V→∞J 1
1,2 = ∞ and lim

V→−∞J 1
1,2 = 0.

�	

4.2 Case Study with D1
D2

> max
{
L2
L1
, R2
R1

}

We study the term J 1
1,2, which provides information of the preference of the ion

channel over different cation under the condition D1
D2

> max
{
L2
L1

, R2
R1

}
.

To get started, we introduce the following result, which is crucial to study the sign
of the term J 1

1,2 as a function of the potential V .

Lemma 4.3 Set t = L/R > 1 and γ (t) be as in (3.7). Suppose that L−
d R−

d > 0. One
has

(i) M(1 − N ) > 0 and V2 < V5 under one of the following conditions

(i1) t > 1 > L−
d /R−

d , α < γ (t) < α − z
z3 ln t

and β ∈ (α, β1);

(i2) t > L−
d /R−

d > 1, α < γ (t) < α − z
z3 ln t

and β ∈ (α, β1);

(i3) t > 1 > L−
d /R−

d , γ (t) > α − z
z3 ln t

and β ∈ (α, β1);

(i4) t > L−
d /R−

d > 1, γ (t) > α − z
z3 ln t

and β ∈ (β∗
1 , β1).

(ii) M(1−N ) > 0 and V2 > V5 if t < L−
d /R−

d , γ (t) > α− z
z3 ln t

and β ∈ (α, β∗
1 ].

(iii) M(1 − N ) < 0 and V2 > V5 under one of the following conditions
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(iii1) L−
d /R−

d > 1 and α ≥ γ (t);
(iii2) L−

d /R−
d > 1, α < γ (t) < α − z

z3 ln t
and β ∈ (β1, 1);

(iii3) L−
d /R−

d > 1, γ (t) > α − z
z3 ln t

and β ∈ (β1, 1).

Proof We only prove case (i), other cases can be proved similarly. Now we prove
(i1)–(i4) one by one.

(i1) If t > 1 > L−
d /R−

d , α < γ (t) < α − z
z3 ln t

and β ∈ (α, β1), then, M < 0 from
Lemma 3.4 and z

z3
< 1 − N < 0 from the statement (ii) of Lemma 3.5. Thus,

M(1 − N ) > 0 and 1
z3(1−N )

> 1
z > 0. Note that ln L

R > 0 > ln
L−
d

R−
d
. We have

1
z3(1−N )

ln L
R > 0 > 1

z ln
L−
d

R−
d
, and further, − 1

z3(1−N )
ln t < 0 < − 1

z ln
L−
d

R−
d
, that

is, V2 < 0 < V5.
(i2) A similar argument as that in (i1) yields M(1− N ) > 0 and 1

z3(1−N )
> 1

z > 0.

Note that ln L
R > ln

L−
d

R−
d

> 0. We have 1
z3(1−N )

ln L
R > 1

z ln
L−
d

R−
d
, and further,

− 1
z3(1−N )

ln t < − 1
z ln

L−
d

R−
d
, that is, V2 < V5.

(i3) If t > 1 > L−
d /R−

d , γ (t) > α − z
z3 ln t

and β ∈ (α, β1), then, M < 0
from Lemma 3.4 and 1 − N < 0 from statement (iii) of Lemma 3.5. Thus,

M(1− N ) > 0 and 1
z3(1−N )

> 0. Note that 1
z > 0 and ln L

R > 0 > ln
L−
d

R−
d
. One

has 1
z3(1−N )

ln L
R > 0 > 1

z ln
L−
d

R−
d
, and further, − 1

z3(1−N )
ln t < 0 < − 1

z ln
L−
d

R−
d
,

that is, V2 < 0 < V5.
(i4) A similar argument as that in (i3) gives M(1 − N ) > 0 and 1

z3(1−N )
> 1

z > 0.

Note that ln L
R > ln

L−
d

R−
d

> 0. We have 1
z3(1−N )

ln L
R > 1

z ln
L−
d

R−
d
, and further,

− 1
z3(1−N )

ln t < − 1
z ln

L−
d

R−
d
, that is, V2 < V5.

�	
It follows from Lemma 4.3 that

Theorem 4.4 Assume N �= 1 and D1
D2

> max
{
L2
L1

, R2
R1

}
. Then,

(i) For M(1− N ) < 0 and V2 > V5, one has, J 1
1,2(V ) > 0 if V < V5 or V > V2;

J 1
1,2(V ) < 0 if V5 < V < V2, that is, (small) positive permanent charge

enhancesJ1,2(V ) if V < V5 or V > V2, and reducesJ1,2(V ) if V5 < V < V2.
Furthermore, there exists a critical potential V 31

c between V2 and V5 such that
J 1
1,2(V ) decreases on (−∞, V 31

c ) and increases on (V 31
c ,+∞).

(ii) For M(1 − N ) > 0,

(ii1) For V2 > V5, one has, J 1
1,2(V ) < 0 if V < V5 or V > V2; J 1

1,2(V ) > 0 if
V5 < V < V2, that is, (small) positive permanent charge reduces J1,2(V )

if V < V5 or V > V2, and enhances J1,2(V ) if V5 < V < V2;
(ii2) For V2 < V5, one has, J 1

1,2(V ) < 0 if V < V2 or V > V5; J 1
1,2(V ) > 0 if

V2 < V < V5, that is, (small) positive permanent charge reduces J1,2(V )

if V < V2 or V > V5, and enhances J1,2(V ) if V2 < V < V5.
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Furthermore, there exists a critical potential V 32
c between V2 and V5 such that

J 1
1,2(V ) increases on (−∞, V 32

c ) and decreases on (V 32
c ,+∞).

In particular, for N = 1, one has J 1
1,2(V ) > 0 (resp. J 1

1,2(V ) < 0) if V < V5 (resp.
V > V5), that is, (small) positive permanent charge enhances (resp. reduces) J1,2(V )

if V < V5 (resp. V > V5). Additionally, J 1
1,2 decreases in the potential V .

4.3 Case Study with L2
L1

< D1
D2

< R2
R1

We study the term J 1
1,2(V ), which provides information of the preference of the ion

channel over different cation under the condition L2
L1

< D1
D2

< R2
R1
.

For N �= 1, we first define a function h(V ) by

h(V ) = −4L−
d R−

d − (L−
d )2ezV − (R−

d )2e−zV .

The following result can be easily established, and will be used in the proof of Theo-
rem 4.6.

Lemma 4.5 Assume N �= 1 and L2
L1

< D1
D2

< R2
R1
. There exists two zeroes of h(V ), V 1

z

and V 2
z with V 1

z < V 2
z such that h(V ) > 0, for V 1

z < V < V 2
z , and h(V ) < 0, for

V < V 1
z or V > V 2

z .

Theorem 4.6 Assume N �= 1 and L2
L1

< D1
D2

< R2
R1
. One has

(i) For M(1 − N ) < 0, if gd3(Vd3) ≥ 0 (or gd3(Vd3) < 0), fd3(V 3
z ) > 0

and fd3(V 4
z ) > 0, then, J 1

1,2(V ) always increases; if gd3(Vd3) < 0, and

fd3(V 3
z ) < 0 (or fd3(V 4

z ) < 0), then, there exists two critical potentials V 51
c

and V 52
c with V 51

c < V 52
c such thatJ 1

1,2(V ) increases on (−∞, V 51
c ), decreases

on (V 51
c , V 52

c ) and increases on (V 52
c ,∞). Furthermore, J 1

1,2(V ) < 0 for

V < V2; J 1
1,2(V2) = 0; and J 1

1,2(V ) > 0 for V > V2; that is, (small) positive
permanent charge reduces J1,2 for V < V2 while enhances J1,2 for V > V2,
and the effect is balanced for V = V2.

(ii) For M(1 − N ) > 0, if gd3(Vd3) ≥ 0 (or gd3(Vd3) < 0), fd3(V 3
z ) > 0

and fd3(V 4
z ) > 0, then, J 1

1,2(V ) always decreases; if gd3(Vd3) < 0, and
fd3(V 3

z ) < 0 (or fd3(V 4
z ) < 0), then, there exists two critical potentials V 61

c
and V 62

c with V 61
c < V 62

c such thatJ 1
1,2(V ) decreases on (−∞, V 61

c ), increases

on (V 61
c , V 62

c ) and decreases on (V 62
c ,∞). Furthermore, J 1

1,2(V ) > 0 for

V < V2; J 1
1,2(V2) = 0; and J 1

1,2(V ) < 0 for V > V2; that is, (small) positive
permanent charge enhances J1,2 for V < V2 while reduces J1,2 for V > V2,
and the effect is balanced for V = V2.
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Here,

fd3(V ) = (2V − V1 − V2)
(
L − Re−zV

) (
L−
d − R−

d e
−zV

)
ezV

+ z
(
R−
d L − L−

d R
)
(V − V1) (V − V2) ,

gd3(V ) =2
(
L−
d − R−

d e
−zV

)
+ z (2V − V1 − V2)

(
L−
d + R−

d e
−zV

)
.

(4.5)

Vd3 is the unique critical point of g′
d3(V ). V 3

z and V 4
z are two zeros of gd3(V ) under

the condition that gd3(Vd3) < 0.
In particular, for N = 1, One has J 1

1,2(V ) < 0, that is, (small) positive permanent

charge reduces J1,2(V ). Furthermore, there exists a critical V 5
c such that J 1

1,2(V )

increases on (−∞, V 5
c ), and decreases on (V 5

c ,∞).

Proof We defer the proof to the “Appendix Sect. 6”. �	
Remark 4.7 Recall that, with Q0 > 0 small, one has J1,2(V , Q0) = J 0

1,2(V ) +
Q0J 1

1,2(V ) + o(Q0). Further depending on the interaction among D1
D2

, R2
R1

, L2
L1
, we

analyze the leading term J 1
1,2(V ), in particular, the sign of J 1

1,2(V ), which charac-
terizes the small positive permanent charge effects on the competition between two
cations. To be specific, if J 1

1,2(V ) > 0 (resp. J 1
1,2(V ) < 0), then, the small pos-

itive permanent charge enhances (resp. reduces) J1,2(V ; Q0), and in either way,
it affects the preference of the ion channel over different cation. In other words,
the sign of J 1

1,2(V ) has impact on the selectivity of the ion channel. On the other

hand, J 1
1,2(V ) > 0 (resp. J 1

1,2(V ) < 0), indicates J1,2(V , Q0) > J1,2(V ; 0) (resp.
J1,2(V , Q0) < J1,2(V ; 0)), but it does not provide any information on the relation
of |J1,2(V ; Q0)| and |J1,2(V , 0)|, which contains even more important information
for the competition, and further depends on the sign of J 0

1,2(V ). This is discussed in
the next section.

4.4 Study on theMagnitude ofJ1,2

To end this section, we examine the effects from the small permanent charge
on the magnitude of J1,2(V ; Q0), which is equivalent to studying the sign of
J 0
1,2(V )J 1

1,2(V ).
Recall from Lemma 3.4 that M < 0 if L > R. Together with (3.6), we have

Theorem 4.8 Assume t = L/R > 1 and N �= 1. One has

(i) if either α ≥ γ (t), or α < γ (t) and β ∈ (β1, 1), then, 1 − N > 0 and

(i1) J 0
1,2(V )J 1

1,2(V ) > 0 if V > V2, that is, (small) positive permanent charge
enhances |J1,2(V )|;

(i2) J 0
1,2(V )J 1

1,2(V ) < 0 if V < V2, that is, (small) positive permanent charge
reduces |J1,2(V )|.

(ii) if α < γ (t) and β ∈ (α, β1), then, 1 − N < 0 and
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(ii1) J 0
1,2(V )J 1

1,2(V ) > 0 if V < V2, that is, (small) positive permanent charge
enhances |J1,2(V )|;

(ii2) J 0
1,2(V )J 1

1,2(V ) < 0 if V > V2, that is, (small) positive permanent charge
reduces |J1,2(V )|.

In particular, for N = 1, one has J 0
1,2(V )J 1

1,2(V ) < 0, that is, (small) positive
permanent charge reduces |J1,2(V )|.
Proof From (4.2), the sign of J 0

1,2(V )J 1
1,2(V ) is determined by the sign of z3M(1 −

N )(V −V2). Together with Lemmas 3.4 and 3.5, one can easily establish the result. �	
We point out that the study in this part further provides information of the pref-

erence of the ion channel over distinct cations. For convenience in the argument, we
let S1 represent the first cation corresponding to the flux J1 and S2 be the cation
corresponding to the flux J2.

For J 0
1,2(V )J 1

1,2(V ) > 0,

• if J 0
1,2(V ) > 0 and J 1

1,2(V ) > 0, then, the ion channel prefers the cation S1
over the cation S2, and the small positive permanent charge further enhances this
preference;

• if J 0
1,2(V ) < 0 and J 1

1,2(V ) < 0, then, the ion channel prefers the cation S2
over the cation S1, and the small positive permanent charge further enhances this
preference.

For J 0
1,2(V )J 1

1,2(V ) < 0,

• if J 0
1,2(V ) > 0 and J 1

1,2(V ) < 0, then, the ion channel prefers the cation S1 over
the cation S2, but the small positive permanent charge reduces this preference;

• if J 0
1,2(V ) < 0 and J 1

1,2(V ) > 0, then, the ion channel prefers the cation S2 over
the cation S1, but the small positive permanent charge reduces this preference.

Our analysis for this concretemodel provides some efficientway to adjust the boundary
conditions (potential and concentration) to affect the preference of ion channels over
distinct cations.

5 Concluding Remarks

In this work, we analyzed the small permanent charge effect on the individual fluxes
for biological channels via a one-dimensional steady-state Poisson–Nernst–Planck
system. Two specific structures of the PNP model mentioned in Sect. 2.1.1 (Propo-
sition 2.2) and Sect. 2.1.2 (Eq. (2.16)), allows one to reduce the singularly perturbed
boundary value problem to an algebraic system-the governing system (2.18). The
significance of the governing system is: (i) it includes almost all relevant physical
parameters, and (ii) once a solution of the governing system is obtained, the singular
orbit (the zeroth-order approximation (in ε) solution of the boundary value problem)
can be readily determined. Based on these specific structures of this concrete model,
under the framework of the geometric singular perturbation theory, a singular orbit is
obtained, from which explicit expressions of Jk0 and Jk1 are extracted. This makes it
possible for one to further examine the dynamics of ionic flows.
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Of particular interest are (i) the leading terms Jk1 that contains small perma-
nent charge effects, and (ii) competitions between cations, which depend on the
complicated nonlinear interplays among systemparameters, such as the diffusion coef-
ficients (D1, D2), the channel geometry in terms of (α, β), the boundary conditions
(Lk, Rk; V ), k = 1, 2, 3 and so on. Among others, we find

• To optimize the permanent charge effects, a short and narrow filter, within which
the permanent charge is confined, is expected (Theorem 3.20 and Remark 3.21);

• The small positive permanent charge cannot enhance the flux of any cation while
reduce that of anion (Theorem 3.15 and Remark 3.16);

• The interaction among D1
D2

, R2
R1

and L2
L1

plays a critical role in characterizing the
competition between cations (Sects. 4.1–4.3).

Finally, we comment that the setup in this work is relatively simple, and may raise
the concern about the feasibility. Indeed, cPNP is known to be reliable when the ionic
mixture is dilute, but with more ion species and nonzero permanent charges included,
the ionic mixture would be crowded. On the other hand, the setup is reasonable for
semi-conductor problems and for synthetic channels. Furthermore, the study in this
work is the first step for analysis ofmore realisticmodels. The simplemodel considered
in this work allows us to obtain more explicit expressions of the ionic fluxes in terms of
physical parameters of the problem so that we are able to extract concrete information
on small permanent charge effects. Moreover, the analysis in this simpler setting
provides important insights for the analysis and numerical studies of more realistic
models.
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6 Appendix: Proofs of Some Results

6.1 Proof of Proposition 2.3

We will provide a detailed proof for statement (i), and the second statement can be
argued in a similar way. To get started, we assume

z(ξ) = (φ(ξ), u(ξ), c1(ξ), c2(ξ), c3(ξ), J1(ξ), J2(ξ), J3(ξ), τ (ξ))

is a solution of the limiting fast system (2.3) from Bj−1 to Z j ; namely, z(ξ) ∈
N [ j−1,r ] = M [ j−1,r ] ∩ Ws(Z j ). It follows that J1(ξ), J2(ξ), J3(ξ) are constants and
τ(ξ) = x j−1. Notice that z(0) ∈ Bj−1 and limξ→+∞ z(ξ) = z(+∞) ∈ Z j . One

has φ(0) = φ[ j−1], ck(0) = c[ j−1]
k , u(+∞) = 0, and z1c1(+∞) + z2c2(+∞) +

z3c3(+∞)+ Q j = 0. Define u(0) = u[ j−1,r ]. By the integrals in Proposition 2.2, we
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get

ln ck(ξ) + zkφ(ξ) = ln c[ j−1]
k + zkφ

[ j−1].

Hence,

ck(ξ) = c[ j−1]
k e−zk

(
φ(ξ)−φ[ j−1])

. (6.1)

Now the first two equations in the limiting fast system (2.3) read

φ′ =u, u′ = −
3∑

k=1

zkc
[ j−1]
k e−zk

(
φ−φ[ j−1]) − Q j , (6.2)

which is a Hamiltonian system with a Hamiltonian function given by

H(φ, u) =1

2
u2 −

3∑
k=1

c[ j−1]
k e−zk

(
φ−φ[ j−1]) + Q jφ.

Not difficult to see that the above Hamiltonian function is exactly the integral H4 in
Proposition 2.2 with the relation (6.1). The equilibria of (6.2) are given by

u = 0,
3∑

k=1

zkc
[ j−1]
k e−zk

(
φ−φ[ j−1]) + Q j = 0. (6.3)

We now claim that φ[ j−1,r ] is the unique solution of the second equation in (6.3). To
get started, we let

f (φ) =
3∑

k=1

zkc
[ j−1]
k ezk

(
φ[ j−1]−φ

)
+ Q j . (6.4)

It is easy to see that f ′(φ) = −∑3
k=1 z

2
kc

[ j−1]
k ezk

(
φ[ j−1]−φ

)
< 0, which implies that

f (φ) is a decreasing function. Note that in our set-up, z1 > 0, z2 > 0, z3 < 0
and c[ j−1]

k ’s are positive, one has f (φ) → −∞ as φ → +∞ and f (φ) → +∞ as
φ → −∞. Correspondingly, (6.3) has a unique solution.

Let ck(+∞) = c[ j−1,r ]
k , then, from (6.1), onehas c[ j−1,r ]

k = c[ j−1]
k e−zk

(
φ[ j−1,r ]−φ[ j−1])

.

Evaluating the integral H4 in Proposition 2.2 at ξ = 0 and ξ → +∞, we have

1

2
u2(0) −

3∑
k=1

c[ j−1]
k + Q jφ

[ j−1] = −
3∑

k=1

c[ j−1]
k e−zk

(
φ[ j−1,r ]−φ[ j−1]) + Q jφ

[ j−1,r ],

which gives the expression for u[ j−1,r ]. The choice of the sign can be determined from
the phase portrait sketched in Fig. 2.
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Fig. 2 The phase portrait for the
Hamiltonian system (6.2). The
sign of u[ j−1,r ] agrees with the
sign of φ[ j−1,r ] − φ[ j−1]

We now claim that the expressions under the square root in u[ j−1,r ] and u[ j,l] are
non-negative. We just provide the proof for the expression in u[ j−1,r ]. Let

F(φ) =
3∑

k=1

c[ j−1]
k

(
1 − ezk (φ

[ j−1]−φ)
) − Q j

(
φ[ j−1] − φ

)
.

Notice that F ′(φ) = f (φ) and F ′′(φ) = f ′(φ) where f (φ) is defined in (6.4).
Since f ′(φ) < 0, one has F(φ) is concave down. Together with F ′(φ[ j−1,r ]) =
f (φ[ j−1,r ]) = 0, one has F(φ[ j−1,r ]) is the unique maximal value of F(φ), and in
particular, F(φ[ j−1,r ]) ≥ F(φ[ j−1]) = 0.

Finally, we consider the transversal intersection of the stable manifold Ws(Z j )

and Bj−1 at points
(
φ[ j−1], u[ j−1,r ], c[ j−1]

1 , c[ j−1]
2 , c[ j−1]

3 , J1, J2, J3, x j−1
)
. From the

above argument, they do intersect at the specified points, and one only need to verify the
intersection is transversal. Since the stable manifold is completely characterized, one
can compute its tangent space at each intersection point (via the complete set of first
integrals obtained in Proposition 2.2) to verify the transversality of the intersection.
It is slightly complicated but straightforward. We would like to omit the detail here.
This completes the proof.

6.2 Proof of Proposition 2.8

Plugging (2.27) into (2.18), the zeroth-order system in Q0 reads

0 = zc[1]
10 e

z(φ[1]
0 −φ

[1,r ]
0 ) + zc[1]

20 e
z(φ[1]

0 −φ
[1,r ]
0 ) + z3c

[1]
30 e

z3(φ
[1]
0 −φ

[1,r ]
0 ),

0 = zc[2]
10 e

z(φ[2]
0 −φ

[2,l]
0 ) + zc[2]

20 e
z(φ[2]

0 −φ
[2,l]
0 ) + z3c

[2]
30 e

z3(φ
[2]
0 −φ

[2,l]
0 ),

0 = C [1]
0

(
ez(φ

[1]
0 −φ

[1,r ]
0 ) − ez(φ

[1]
0 −φ

[1,l]
0 )

)
+ c[1]

30

(
ez3(φ

[1]
0 −φ

[1,r ]
0 ) − ez3(φ

[1]
0 −φ

[1,l]
0 )

)
,

0 = C [2]
0

(
ez(φ

[2]
0 −φ

[2,r ]
0 ) − ez(φ

[2]
0 −φ

[2,l]
0 )

)
+ c[2]

30

(
ez3(φ

[2]
0 −φ

[2,r ]
0 ) − ez3(φ

[2]
0 −φ

[2,l]
0 )

)
,
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J10 = C [0,r ] − C [1,l]
0

lnC [0,r ] − lnC [1,l]
0

· lnC
[0,r ] − lnC [1,l]

0 ez(φ
[1,l]
0 −φ[0,r ])

C [0,r ] − C [1,l]
0 ez(φ

[1,l]
0 −φ[0,r ])

· c
[0,r ]
1 − c[1,l]

10 ez(φ
[1,l]
0 −φ[0,r ])

H(x1)

= C [2,r ]
0 − C [3,l]

lnC [2,r ]
0 − lnC [3,l] · lnC

[2,r ]
0 − lnC [3,l]ez(φ[3,l]−φ

[2,r ]
0 )

C [2,r ]
0 − C [3,l]ez(φ[3,l]−φ

[2,r ]
0 )

· c
[2,r ]
10 − c[3,l]

1 ez(φ
[3,l]−φ

[2,r ]
0 )

H(1) − H(x2)
,

J20 = C [0,r ] − C [1,l]
0

lnC [0,r ] − lnC [1,l]
0

· lnC
[0,r ] − lnC [1,l]

0 ez(φ
[1,l]
0 −φ[0,r ])

C [0,r ] − C [1,l]
0 ez(φ

[1,l]
0 −φ[0,r ])

· c
[0,r ]
2 − c[1,l]

20 ez(φ
[1,l]
0 −φ[0,r ])

H(x1)

= C [2,r ]
0 − C [3,l]

lnC [2,r ]
0 − lnC [3,l] · lnC

[2,r ]
0 − lnC [3,l]ez(φ[3,l]−φ

[2,r ]
0 )

C [2,r ]
0 − C [3,l]ez(φ[3,l]−φ

[2,r ]
0 )

· c
[2,r ]
20 − c[3,l]

2 ez(φ
[3,l]−φ

[2,r ]
0 )

H(1) − H(x2)
,

J30 = − z

z3

C [0,r ] − C [1,l]
0

lnC [0,r ] − lnC [1,l]
0

lnC [0,r ] − lnC [1,l]
0 ez(φ

[1,l]
0 −φ[0,r ])

H(x1)

= − z

z3

C [2,r ]
0 − C [3,l]

lnC [2,r ]
0 − lnC [3,l]

lnC [2,r ]
0 − lnC [3,l]ez(φ[3,l]−φ

[2,r ]
0 )

H(1) − H(x2)
,

φ
[2]
0 = φ

[1]
0 − T c

0 y00, c[2,l]
10 = J20c

[1,r ]
10 − J10c

[1,r ]
20

J10 + J20
ezT

c
0 y00 + J10C

[1,r ]
0

J10 + J20
ezz3T

m
0 y00 ,

c[2,l]
20 = J10c

[1,r ]
20 − J20c

[1,r ]
10

J10 + J20
ezT

c
0 y00 + J20C

[1,r ]
0

J10 + J20
ezz3T

m
0 y00 ,

Tm
0 = z3 − z

z3

C [1]
0 − C [2]

0

H(x2) − H(x1)
. (6.5)

Recall that on Z j , one has z1c1 + z2c2 + z3c3 + Q j = 0. Plugging (2.27) into it, the
zeroth-order terms in Q0 gives

c[1]
30 = − z

z3
C [1]
0 , c[2]

30 = − z

z3
C [2]
0 . (6.6)

Plugging (6.6) into the first two equations of (6.5) gives

φ
[1]
0 = φ

[1,r ]
0 and φ

[2]
0 = φ

[2,l]
0 .
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From (2.19), one then has

φ[0,r ] = V − 1

z − z3
ln

−z3L3
zL

, c[0,r ]1 = L1
(−z3L3

zL

) z
z−z3 , c[0,r ]2 = L2

(−z3L3
zL

) z
z−z3 ,

c[0,r ]3 = L3
(−z3L3

zL

) z3
z−z3 , φ[3,l] = − 1

z − z3
ln

−z3R3
zR

, c[3,l]1 = R1
(−z3R3

zR

) z
z−z3 ,

c[3,l]2 = R2
(−z3R3

zR

) z
z−z3 , c[3,l]3 = R3

(−z3R3
zR

) z3
z−z3 ,

φ
[1,l]
0 = φ

[1,r ]
0 = φ

[1]
0 , φ

[2,l]
0 = φ

[2,r ]
0 = φ

[2]
0 , c[1,l]k0 = c[1,r ]k0 = c[1]k0 , c[2,l]k0 = c[2,r ]k0 = c[2]k0 ,

for k = 1, 2, 3, and further, from (6.5), we have

J10 = C [0,r ] − C [1]
0

lnC [0,r ] − lnC [1]
0

lnC [0,r ] − lnC [1]
0 ez(φ

[1]
0 −φ[0,r ])

C [0,r ] − C [1]
0 ez(φ

[1]
0 −φ[0,r ])

c[0,r ]
1 − c[1]

10 e
z(φ[1]

0 −φ[0,r ])

H(x1)

= C [2]
0 − C [3,l]

lnC [2]
0 − lnC [3,l]

lnC [2]
0 − lnC [3,l]ez(φ[3,l]−φ

[2]
0 )

C [2]
0 − C [3,l]ez(φ[3,l]−φ

[2]
0 )

c[2]
10 − c[3,l]

1 ez(φ
[3,l]−φ

[2]
0 )

H(1) − H(x2)
,

J20 = C [0,r ] − C [1]
0

lnC [0,r ] − lnC [1]
0

lnC [0,r ] − lnC [1]
0 ez(φ

[1]
0 −φ[0,r ])

C [0,r ] − C [1]
0 ez(φ

[1]
0 −φ[0,r ])

c[0,r ]
2 − c[1]

20 e
z(φ[1]

0 −φ[0,r ])

H(x1)

= C [2]
0 − C [3,l]

lnC [2]
0 − lnC [3,l]

lnC [2]
0 − lnC [3,l]ez(φ[3,l]−φ

[2]
0 )

C [2]
0 − C [3,l]ez(φ[3,l]−φ

[2]
0 )

c[2]
20 − c[3,l]

2 ez(φ
[3,l]−φ

[2]
0 )

H(1) − H(x2)
,

J30 = − z

z3

C [0,r ] − C [1]
0

lnC [0,r ] − lnC [1]
0

lnC [0,r ] − lnC [1]
0 ez(φ

[1]
0 −φ[0,r ])

H(x1)

= − z

z3

C [2]
0 − C [3,l]

lnC [2]
0 − lnC [3,l]

lnC [2]
0 − lnC [3,l]ez(φ[3,l]−φ

[2]
0 )

H(1) − H(x2)
,

φ
[2]
0 = φ

[1]
0 − T c

0 y00, C [2]
0 = C [1]

0 ezz3T
m
0 y00 ,

J10
(
C [2]
0 − C [1]

0 ezT
c
0 y00

)
= (J10 + J20)

(
c[2]
10 − c[1]

10 e
zT c

0 y00
)

,

Tm
0 = z3 − z

z3

C [1]
0 − C [2]

0

H(x2) − H(x1)
.

(6.7)

Adding J10, J20 and J30 in (6.7), together with the last equation in (6.7), one has

Tm
0 = z3 − z

z3

C [0,r ] − C [1]
0

H(x1)
= z3 − z

z3

C [2]
0 − C [3,l]

H(x2) − H(x1)
= z3 − z

z3

C [1]
0 − C [2]

0

H(x2) − H(x1)
,

(6.8)
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from which

C [0,r ] − C [1]
0

H(x1)
= C [2]

0 − C [3,l]

H(x2) − H(x1)
= C [1]

0 − C [2]
0

H(x2) − H(x1)
= C [0,r ] − C [3,l]

H(1)
, (6.9)

which implies

C [1]
0 = (1 − α)C [0,r ] + αC [3,l], C [2]

0 = (1 − β)C [0,r ] + βC [3,l]

and

Tm
0 = z3 − z

z3

C [0,r ] − C [3,l]

H(1)
.

It follows from the fifth equation in (6.7) that

y00 = H(1)
(
lnC [2]

0 − lnC [1]
0

)

z(z − z3)
(
C [0,r ] − C [3,l]) . (6.10)

Adding the first two equations in (6.7), one has

J10 + J20 =C [0,r ] − C [1]
0

H(x1)

(
1 − z(φ[1]

0 − φ
[0]
0 )

lnC [0,r ] − lnC [1]
0

)

= C [2]
0 − C [3,l]

H(1) − H(x2)

(
1 − z(φ[3,l] − φ

[2]
0 )

lnC [2]
0 − lnC [3,l]

)
.

(6.11)

Equations (6.9), (6.10), (6.11), together with the fourth equation in (6.7) yield

φ
[1]
0 − φ

[0]
0

lnC [1]
0 − lnC [0,r ] = φ[3,l] − φ

[2]
0

lnC [3,l] − lnC [2]
0

= φ
[2]
0 − φ

[1]
0

lnC [2]
0 − lnC [1]

0

= φ[3,l] − φ
[0]
0

lnC [3,l] − lnC [0,r ] .

(6.12)

It now follows that

φ
[1]
0 = lnC [1]

0 − lnC [3,l]

lnC [0,r ] − lnC [3,l] φ
[0,r ] + lnC [0,r ] − lnC [1]

0

lnC [0,r ] − lnC [3,l] φ
[3,l],

φ
[2]
0 = lnC [2]

0 − lnC [3,l]

lnC [0,r ] − lnC [3,l] φ
[0,r ] + lnC [0,r ] − lnC [2]

0

lnC [0,r ] − lnC [3,l] φ
[3,l].
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From the first two equations and the penultimate equation in (6.7), one has

J10
J10 + J20

= c[0,r ]
1 − c[1]

10 e
z(φ[1]

0 −φ[0,r ])

C [0,r ] − C [1]
0 ez(φ

[1]
0 −φ[0,r ])

= c[2]
10 − c[3,l]

1 ez(φ
[3,l]−φ

[2]
0 )

C [2]
0 − C [3,l]ez(φ[3,l]−φ

[2]
0 )

= c[2]
10 − c[1]

10 e
z(φ[1]

0 −φ
[2]
0 )

C [2]
0 − C [1]

0 ez(φ
[1]
0 −φ

[2]
0 )

,

from which, one obtains the expressions of c[1]
10 , c[1]

20 , c[2]
10 and c[2]

20 . The expressions
for J10 and J20 then follow. This completes the proof.

6.3 Proof of Lemma 3.5

N > 0 follows from the fact that both M and ln ω(β)
ω(α)

have the same sign with that of
R − L . Rewrite 1 − N as

1 − N = g(β)

(β − α)(t − 1)2
, where g(β) = ω(α)ω(β) ln t ln

ω(β)

ω(α)
+ (β − α)(t − 1)2.

One then can easily obtain limt→1(1 − N ) = 0.
For the other statements, we just established statement (i) for t > 1, and those

for t < 1 can be proved similarly. Direct computation yields d(1−N )
dβ = g1(β)

(β−α)2(t−1)2
,

where g1(β) = −ω2(α) ln t ln ω(β)
ω(α)

+ (β − α)(t − 1)2 ((α − γ (t)) ln t − 1) , and
further

g′
1(β) = ω2(α)

t − 1

ω(β)
ln t + (t − 1)2 ((α − γ (t)) ln t − 1) , g′′

1 (β) = ω2(α)

ω2(β)
(1 − t)2 ln t .

It then follows that for t > 1, g1(β) is concave upward. Furthermore, one has

lim
β→α

g1(β) = 0 and lim
β→α

g′
1(β) = 0,

which implies g1(β) > 0 for β > α. Note that lim
β→α

d(1 − N )

dβ
= ln

t

2
> 0 for t > 1.

We have d(1−N )
dβ > 0 for β > α, and 1 − N is strictly increasing on (α,+∞).

Additionally, since lim
β→α

(1 − N ) = (α − γ (t)) ln t, one has, for t > 1,

(i1) if α ≥ γ (t), then z
z3

< 0 < 1 − N , which yields V1 < 0 < V2;
(i2) For α < γ (t), we first claim that there exists a unique β1 ∈ (α, 1) such that

1 − N = 0 for β = β1. In fact, based on the facts that

lim
β→α

(1 − N ) = (α − γ (t)) ln t < 0
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and 1−N is strictly increasing on (α,+∞), one just need to show that 1−N > 0
for β = 1, which is yielded by g(1) > 0. For convenience, for t > 1, we set

g2(α) := g(1) = −ω(α) ln t lnω(α) + (1 − α)(t − 1)2.

Note that g′′
2 (α) = − (1−t)2 ln t

ω(α)
< 0, which indicates that g2(α) is concave

downward for t > 1. Note also that g2(1) = 0. To show that g(1) > 0, we
claim g2(0) ≥ 0. To get started, we set

g3(t) := g2(0) = −t(ln t)2 + (t − 1)2.

Direct calculation gives g′
3(t) = −(ln t)2 − 2 ln t + 2(t − 1) and g′′

3 (t) =
2
t (t − 1 − ln t) > 0 for all t > 1. Together with g3(1) = g′

3(1) = 0, one has
g3(t) = g2(0) > 0.
If α < γ (t) and z

z3
< (α − γ (t)) ln t , which is equivalent to α < γ (t) <

α − z
z3 ln t

, then, one has z
z3

< 1 − B for all β > α, and more specifically,
z
z3

< 1−N < 0, which implies V2 < V1 < 0 for β ∈ (α, β1); z
z3

< 1−N = 0
for β = β1; z

z3
< 0 < 1 − N , which indicates V1 < 0 < V2, for β ∈ (β1, 1).

(i3) if γ (t) > α − z
z3 ln t

, then, the straight line w = z
z3

and w = 1 − N have
a unique intersection point (β∗

1 , w(β∗
1 )), which indicates that there exists a

unique β∗
1 ∈ (α, β1) such that 1 − N < z

z3
< 0, which suggests V1 < V2 < 0

for β ∈ (α, β∗
1 ); 1 − N = z

z3
< 0 and further V2 = V1 < 0 for β = β∗

1 ;
z
z3

< 1−N < 0, which yields V2 < V1 < 0 for β ∈ (β∗
1 , β1); z

z3
< 1−N = 0

for β = β1; and z
z3

< 0 < 1−N , which indicates V1 < 0 < V2 for β ∈ (β1, 1).

6.4 Proof of Theorem 3.18

Rewrite J11 as J11

= Mzz3(1 − N )

(z − z3)H(1) (ln L − ln R)2
(V − V1) (V − V2)

L − Re−zV

(
L1 − R1e

−zV
)

.

Direct calculation yields
dJ11
dV

= Mzz3(1 − N )

(z − z3)H(1) (ln L − ln R)2
e−zV

(
L − Re−zV

)2 f11(V ),

where

f11(V ) = (2V − V1 − V2)
(
L − Re−zV

) (
L1 − R1e

−zV
)

+ z (R1L − L1R) (V − V1) (V − V2) .
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It follows that

f ′
11(V ) = d f11

dV
= ezV

(
L − Re−zV

)
g11(V ),

where g11(V ) = 2
(
L1 − R1e−zV

)+ z (2V − V1 − V2)
(
L1 + R1e−zV

)
. For g11(V ),

one has

g′
11(V ) = dg11

dV
= 4zR1e

−zV + 2zL1 − z2R1e
−zV (2V − V1 − V2) ,

g′′
11(V ) = d2g11

dV 2 = z2R1e
−zV (z (2V − V1 − V2) − 6) .

(6.13)

From (6.13), we obtain a unique zero of g′′
11(V ) given by V0 = 1

2

(
6
z + V1 + V2

)
,

which is the minimum point of g′
11(V ). Note that lim

V→+∞ g′
11(V ) = 2zL1 > 0 and

lim
V→−∞ g′

11(V ) = +∞. If the minimal value g′
11(V0) = 2z

(
L1 − R1e−zV0

) ≥ 0,

i.e., V0 ≤ V3, then, g′
11(V ) ≤ 0 for all V . In this case, g11(V ) has a unique zero,

since lim
V→+∞ g11(V ) = +∞ and lim

V→−∞ g11 = −∞. If the minimal value g′
11(V0) =

2z
(
L1 − R1e−zV0

)
< 0 i.e., V0 < V3, then g′

11(V ) has two zeros. Suppose Ve is a

zero point of g′
11(V ), one has 2Ve − V1 − V2 = 4R1+2L1ezVe

zR1
and the extreme value of

g11(V ) given by g11(Ve) = 2
R1

(
L2
1e

zVe + R2
1e

−zVe + 4L1R1
)

> 0, which indicates
that g11(V ) has a unique zero point. Therefore, no matter V0 ≤ V3 or V0 < V3, g11(V )

always has a unique zero denoted by Vz . Furthermore, f ′
11(V ) has two zeros V1 and

Vz . To determine the order of V1 and Vz , one just need to determine the sign of g11(V1).
In fact, if g11(V1) > 0, then V1 > Vz , if g11(V1) = 0, then V1 = Vz , if g11(V1) < 0,
then V1 < Vz .

Note that g11(V1) = 1
zL1LR

[
C R1

L1
+ 1

(1−N )t

(
z
z3
ln t − (ln t − 2)(1 − N )

)]
,where

C is defined in (3.8) and the sign of the quantity C has been studied in Lemma 3.17.

It then follows that , with � =
z
z3

ln t−(ln t−2)(1−N )

z
z3

ln t−(ln t+2)(1−N )
,

• for C > 0, one has g11(V1) > 0 if R1
L1

> −�
t , and g11(V1) < 0 if R1

L1
< −�

t .

• for C < 0, one has g11(V1) > 0 if R1
L1

< −�
t , and g11(V1) < 0 if R1

L1
> −�

t .• for C = 0, one has g11(V1) > 0.

In particular, g11(V1) = 0 if R1
L1

= −�
t with C �= 0.

If V1 < Vz , then f11 is increasing on (−∞, V1), decreasing on (V1, V2), and
increasing on (V2,∞). Note that f11(V1) = 0, which is a local maximum of f11,
limV→−∞ f11 = −∞ and limV→∞ f11 = ∞, f11 has the other zero V 1

11 with V 1
11 >

V1. Furthermore, lim
V→V1

dJ11
dV

= Mz3(1 − N )ezV1

2(z − z3)H(1) (ln L − ln R)2 R
g11(V1) < 0, since

g11(V1) < g11(Vz) = 0, which can be obtained from the fact that g11 is increasing on
(−∞, Vz) and V1 < Vz . Therefore, when V > V 1

11,
dJ11
dV > 0, and when V < V 1

11,
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dJ11
dV < 0. This result also hold for the case when V1 ≥ Vz , which can be proved in a
similar way. Consequently the statement (i) follows.

The statements for J21 and J31 can be proved similarly.

6.5 Proof of Theorem 4.6

We will just prove the first statement. Statement (ii) can be proved by a similar argu-
ment. For L2

L1
< D1

D2
< R2

R1
, one has

J 1
1,2 = Mzz3(1 − N )

(z − z3)H(1) (ln L − ln R)2
(V − V1) (V − V2)

L − Re−zV

(
L−
d − R−

d e
−zV

)
.

Direct calculation yields

dJ 1
1,2

dV
= Mzz3(1 − N )

(z − z3)H(1) (ln L − ln R)2
e−zV

(
L − Re−zV

)2 fd3(V ),

and further

f ′
d3(V ) = ezV

(
L − Re−zV

)
gd3(V ), (6.14)

where fd3(V ) and gd3(V ) are given in (4.5).
For gd3(V ), we have

g′
d3(V ) =2zL−

d + 4zR−
d e

−zV − z2R−
d e

−zV (2V − V1 − V2) ,

g′′
d3(V ) = − z2R−

d e
−zV (6 − z (2V − V1 − V2)) .

(6.15)

From (6.15), we obtain a unique zero of g′′
d3(V ) given by V0 = 1

2

(
6
z + V1 + V2

)
,

which actually is the maximum value point of g′
d3(V ). Note that

lim
V→+∞ g′

d3(V ) = 2zL−
d > 0, lim

V→−∞ g′
d3(V ) = −∞,

and the maximal value g′
d3(V0) = 2z

(
L−
d − R−

d e
−zV0

)
> 0. Hence, g′

d3(V ) has a
unique zero denoted by Vd3 and Vd3 is actually the minimum value point of gd3(V ).

From g′
d3(V ) = 0, one immediately has 2Vd3 −V1 −V2 = 4R−

d +2L−
d e

zVd3

zR−
d

and the cor-

responding extreme value of gd3(V ), i.e., gd3(Vd3) = − 2
R−
d
h(Vd3). From lemma 4.5,

gd3(Vd3) > 0 for V 1
z < Vd3 < V 2

z , gd3(Vd3) = 0 for Vd3 = V 1
z or Vd3 = V 2

z , and
gd3(Vd3) < 0 for Vd3 < V 1

z or Vd3 > V 2
z .

If gd3(Vd3) > 0, then, gd3(V ) > 0 for all V . It follows that f ′
d3(V )

has a unique zero V1, f ′
d3(V ) > 0 for V > V1, and f ′

d3(V ) < 0 for
V < V1. Therefore, the minimal value of fd3(V ) is fd3(V1) = 0. Note that
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lim
V→V1

dJ 1
1,2

dV
= Mz3(1 − N )gd3(V1)

2(z − z3)H(1) (ln L − ln R)2 L
> 0.Then,

dJ 1
1,2

dV > 0 follows,which

yields J 1
1,2(V ) always increases.

If gd3(Vd3) = 0, then gd3(V ) has the unique zero Vd3. From (6.14), f ′
d3(V ) has

two zeros V1 and Vd3. To determine the position relation of V1 and Vd3, one just need

to determine the sign of g′
d3(V1) = 2zR−

d

(
L−
d

R−
d

+ t
(
(4+ln t)(1−N )− z

z3
ln t

)
2(1−N )

)
. In fact, if

g′
d3(V1) < 0, then V1 < Vd3, if g′

d3(V1) = 0, then V1 = Vd3, if g′
d3(V1) > 0, then

V1 > Vd3. However, no matter V1 < Vd3 or V1 ≥ Vd3, from (6.14), one always has
f ′
d3 ≤ 0 for V < V1 and f ′

d3 ≥ 0 for V > V1. Hence, the minimal value of fd3 is

fd3(V1) = 0. Note that lim
V→V1

dJ 1
1,2

dV
= Mz3(1 − N )gd3(V1)

2(z − z3)H(1) (ln L − ln R)2 L
> 0. Then,

dJ 1
1,2

dV > 0 follows, and hence, J 1
1,2(V ) always increases.

If gd3(Vd3) < 0, then, gd3(V ) has two zeros denoted by V 3
z and V 4

z with V 3
z < V 4

z ,
since lim

V→±∞ gd3 = +∞. It follows that f ′
d3(V ) has three zeros V1, V 3

z and V 4
z . To

determine the position relation of V1, V 3
z and V 4

z , one just need to determine the sign
of gd3(V1) and g′

d3(V1). In fact, if gd3(V1) < 0, then V 3
z < V1 < V 4

z , if gd3(V1) > 0
and g′

d3(V1) < 0, then V1 < V 3
z < V 4

z , and if gd3(V1) > 0 and g′
d3(V1) > 0, then

V 3
z < V 4

z < V1.

Note that gd3(V1) =
z
z3

ln t−(ln t−2)(1−N )

(1−N )R−
d

(
L−
d

R−
d

+ 1
t�

)
. It follows that

• For 1
1−N

(
z
z3
ln t−(ln t−2)(1−N )

)
> 0, one has gd3(V1) > 0 (resp. gd3(V1) < 0)

if
L−
d

R−
d

< − 1
t� (resp.

L−
d

R−
d

> − 1
t� );

• For 1
1−N

(
z
z3
ln t − (ln t − 2)(1 − N )

)
< 0, one has gd3(V1) > 0 (resp.

gd3(V1) < 0) if
L−
d

R−
d

> − 1
t� (resp.

L−
d

R−
d

< − 1
t� );

• For 1
1−N

(
z
z3
ln t − (ln t − 2)(1 − N )

)
�= 0, one has gd3(V1) = 0 if

L−
d

R−
d

= − 1
t� ;

• For 1
1−N

(
z
z3
ln t − (ln t − 2)(1 − N )

)
= 0, one has gd3(V1) > 0.

If V 3
z < V1 < V 4

z , then, fd3(V ) decreases on (−∞, V 3
z ), increases on (V 3

z , V1),
decreases on (V1, V 4

z ), and increases on (V 4
z ,∞). Note that fd3(V1) = 0, which is a

local maximum of fd3(V ), one has fd3(V 3
z ) < 0 and fd3(V 4

z ) < 0. Since

lim
V→V1

dJ 1
1,2

dV
= Mz3(1 − N )gd3(V1)

2(z − z3)H(1) (ln L − ln R)2 L
< 0,

dJ 1
1,2

dV has two zeros denoted by V 51
c and V 52

c with V 51
c < V 52

c such that
dJ 1

1,2
dV > 0 for

V < V 51
c or V > V 52

c , and
dJ 1

1,2
dV < 0 for V 51

c < V < V 52
c , that is, J 1

1,2 increases on

(−∞, V 51
c ), decreases on (V 51

c , V 52
c ), and increases on (V 52

c ,∞).
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Similar discussions can be applied to the cases with V1 < V 3
z < V 4

z and V 3
z <

V 4
z < V1, respectively. This completes the proof of the first statement.
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